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Sum rules for the forward elastic low energy scattering of light 
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Abstract. Sum rule constraints have been obtained for the scattering amplitude, differential 
elastic scattering cross section and the total cross section for light scattering at low energies. 
An application of one of the sum rules is made for the case of photon scattering from the 
H - ion, calculated in the asymptotic approximation. 

1. Introduction 

A number of interesting sum rule relations for the total cross section and the differ- 
ential elastic cross section have been derived from the dispersion relations for the for- 
ward scattering of light. This has been a particulerly stimulating area for high energy 
photon scattering (Damashek and Gilman 1970, Drell and Hearn 1966, Ferro Fontan 
et a1 1972, Maximon and O’Connell 1974). On the other hand, low energy scattering 
has received considerably less attention from the time Gell-Mann et a1 (1954) succeeded 
in providing a dispersion theoretic derivation of the Thomas-Reiche-Kuhn sum rule 
(see also Goldberger and Low 1968). 

The motivation for obtaining sum rules applicable to low energy scattering is pro- 
vided by recent theoretical interest in photon scattering from small atomic systems H’ 
and H- (Gavrila 1967, Granovskii 1969, Gavrila and Costescu 1970, Moses 1972, 1973, 
Adelman 1973). Very few consistency checks are available to test approximate theoretical 
relationships for photon scattering. Additionally, sum rule constraints provide a 
criterion for determining the quality of experimentally observed cross sections. The H- 
ion provides a suitable candidate for the testing of sum rules of the type discussed in this 
paper. Within the asymptotic approximation, fairly simple expressions for the differ- 
ential elastic cross section and the total cross section of the H-  ion can be derived, and 
the consistency of these results can be clarified by the application of sum rule constraints. 

The sum rules are based on the usual assumptions which allow the dispersion 
relations to be derived. It is of course implicitly understood that writing the upper 
limit of the definite integrals as infinity is only formal since, within the present context, 
the sum rules are intended only for scattering from bound electrons. This is not the case 
at sufficiently high energies where Compton and Delbruck scattering and pair production 
become increasingly important. The problem of photon scattering from bound electrons 
in the very high energy region has been considered by Goldberger and Low (1968). 

2. Derivation of sum rules 

The starting point for work on sum rule constraints are the well known Kramers- 
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Kronig relationships, connecting the real and imaginary parts of the forward scattering 
amplitude, denoted by fR(k) and f,(k) respectively. These relations take the form 

An approach which has been of considerable utility in other applications, namely 
obtaining suitable constraints on the optical constants, has been the examination and 
comparison of the asymptotic behaviour of the appropriate dispersion relations 
(Altarelli et a1 1972, Altarelli and Smith 1974). A number of useful sum rules have 
recently emerged from this approach. This idea is taken up for the scattering amplitude 
for the forward elastic photon scattering from bound electron systems. 

The asymptotic behaviour of the scattering amplitude takes the form 

f(k) N A + Bk-' a s k - c c  (2.3) 

where A and B are constants. This asymptotic behaviour is obtained from the Kramers- 
Heisenberg formula for f(k)  in the dipole approximation. This choice requires us to 
restrict k to satisfy the condition k << ra-', where r ,  is the molecular dimension of the 
atom or molecule from which scattering is being considered. In this section dispersion 
relations based on the functions k-'f(k), k-'f(k) and their squares will be considered. 
These functions are well behaved in the limit k ---t 0. Along with the asymmptotic 
behaviour of the scattering amplitude, we also require the asymptotic behaviour of the 
principal value integral 

(2.4) 

where F(x) is a continuous differentiable function. The asymptotic behaviour of g ( y )  
has been studied by Frye and Warnock (1963). The following results have been obtained 
(Frye and Warnock 1963) : 

g(y) = A ! F(x )  dx + O(y- ' In' -' Y )  
Y o  

for 

1 "  
Y o  

g ( Y )  = - j F ( x )  dx +O(Y-") 

F ( x )  = o(x-"), 

for 

CL > 1 (E # 2); 
and (Altarelli et a1 1972): 

g ( y )  = A jm F(x )  dx + O ( Y - ~  In y )  
4 0  

for 

(2.7) 

F ( x )  = o(x-2). (2.10) 
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As a reminder to the reader, the notation F ( x )  = O(h(x)) as x ---f cx) means that there 
exist positive constants a, b such that IF(x)l < alh(x)J for x > b. Kubo and Ichimura 
(1972) have considered the expansion of the principal value integral in a more general 
way. By inserting the expansion 

1 to xn -- - c x  Y-x , = o Y  

into (2.4), then 
30 1 Pa;  

(2.1 1) 

(2.12) 

which is to be regarded as a purely formal expansion and as pointed out by Kubo and 
Ichimura, may not make any sense and may not be convergent. 

For the elastic scattering of light from bound electronic systems, f(k) does not vanish 
as k -+ cx) (see equation (2.3)), so the Kramers-Kronig relations (2.1) and (2.2) require 
modification. Dispersion relations based on the function k-’f(k) lead to the results 

and 

(2.13) 

(2.14) 

Dispersion relations based on the function kP2f(k) will also be employed; they are 

and 

-2k3’ fR(k’) dk’ 
f,(k) = ___ n . k’2(k‘2 -k2) ’  

(2.15) 

(2.’16) 

Note that there is no need to indent the path of integration at k = 0, since the function 
k-2f(k) is well behaved at k = 0. Finally, we will Make use of the dispersion relations 
based on k-’f2(k), which are 

and 

(2.17) 

(2.18) 

We shall consider first the asymptotic limit of equation (2.18). If (2.18) is rearranged 
which allows the to the format of (2.4), then the leading term of F(x) is of the form 

application of (2.7). Hence (2.18) becomes 

for k -+ CO. 
O0 [ f 3 k ‘ )  -f?(k‘)l dk‘ + O(k- 3) Jo k” 

nk-3f;(k)fR(k) = k - 2  (2.19) 
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From the asymptotic form of f(k), equation (2.3), we have the result 

71k-3.h(k)fR(k) 0(k-3), k-, CO. (2.20) 

Comparison of the asymptotic expansion of both sides of equation (2.19) leads to the 
expression 

[fi(k)-f:(k)]k-2 dk = 0. 
- 0  

This result can be recast into a more useful form by writing 

lom [fi(k)+f:(k)]k-2 dk = 2 f:(k)k-2 dk Iom 
and employing the expressions for the differential elastic scattering cross section 

-- - fi(k)+f:(k) 
dSZ 

and the total cross section 

Equation (2.22) becomes 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

which is a principal result of this paper. The result obtained is the low energy analogue 
of a result recently derived using different arguments to those above, for photon scatter- 
ing from unbound electrons in the high energy domain (Maximon and O'Connell 1974). 

Considering the dispersion relation based on the function k-4f2(k) leads to 

(2.26) 

In a similar manner, the above asymptotic argument applied to equation (2.26) gives the 
result 

z k  ' "(k)fR (k) = k - [ f;( k') - f: (k')] k' - dk' + O( k - 5 ) ,  k-, CO. 

Comparison of the asymptotic expansions as k -+ CD leads to the result that 

lom [f:(k)-f:(k)]k-4 dk = 0 

which can be rearranged to read 

(2.27) 

(2.28) 

(2.29) 

The expression (2.29) may also be derived independently of the asymptotic expansion 
argument. Comparison of the dispersion relations (2.26) and (2.18) yields the result 
(2.29) directly. 
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In a completely analogous manner, sum rule relations based on higher powers of 
f ( k ) / k  can be derived. For example, the dispersion relation based on k-3f3(k) is 

(2.30) 

Comparing the asymptotic expansion as k + CO of both sides of (2.30) leads to the result 

which can be arranged to give 

(2.31) 

(2.32) 

A more general form of equation (2.29) can be derived directly from (2.13). From 
equation (2.13) we have that 

and comparing this with (2.18) leads to the result 

(2.33) 

(2.34) 

and hence the expression 

(2.35) dk aT(k)[aT(k)-aT(kl)l dk jOm 2 kZ(kZ - k’z) = J0 ( k z  - kt2) 

The limit k‘ + 0 in (2.35) now yields (2.29). 
An interesting procedure for obtaining superconvergent dispersion relations has been 

indicated by Liu and Okubo (1967). This approach has been applied to obtain sum rule 
constraints on the optical properties with success (Villani and Zimerman 1973). The 
essence of this approach amounts to multiplying the amplitude by a function which 
retains essentially the same domain for which the amplitude is a holomorphic function. 
This can be implemented for the scattering amplitude for photon scattering, by consider- 
ing the integral 

with the contour a large semicircle in the upper-half complex frequency plane, together 
with a strip along the real frequency axis ( - a ,  a )  plus the portions k + ih along the cuts 
from - CI to - cc and CI to CO. Evaluation of the integral leads to the result 

o, (k)dk  
k(k - C I ) ~ ( ~  + sin rcP 

(2.36) 
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which simplifies for the special cases /?r 3 and = 0 to 

and 

= 0. Jo= SF 

(2.37) 

(2.38) 

Equation (2.38) can also be derived by applying the asymptotic argument as k -, cc to 
(2.16). Equation (2.38) indicates the existence of non-trivial zeros for the function fR(k) 
(for k # 0), and this has been remarked upon elsewhere (King 1975). 

3. Application to the H -  ion 

In this section we apply the sum rule equation (2.25) to check the consistency of the 
differential elastic cross section and the total cross section, which for the case of the 
H-  ion, can be obtained in a relatively simple closed form, within the framework of the 
asymptotic approximation. The derivation of the scattering amplitude essentially 
coincides with Adelman's (1972) derivation of the dynamic polarizability for H-.  So 
we just briefly sketch the derivation, leaving the reader to consult Adelman's paper for 
additional details on the justification of the asymptotic approximation. 

The differential elastic photon scattering cross section in the dipole length formula- 
tion for the H-  ion is given by 

where 

Equation (3.2) may be rewritten as 

= W o ( r 1 ,  r 2 W 1  +r2) W l ,  7.2)) 

where 

and Y(r , ,  r2) satisfies the differential equation 

( E O  - H + w ) W l ,  r2) = ( r l +  ~ 2 ) + ; ) ( r 1 ,  r2 )  

where 

From equation (3.5) the following result is obtained: 

Wl)@O - E l S + w ) + 3 V : ~ ( r l )  = YlX(r1) 
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(3.8) 

(3.9) 

(3.10) 

(3.1 1) 

and N is a normalization constant, y = (2E)’/’, where E is the binding energy. Re- 
expressing 6(r) in the form 

O(r)  = EX(r)g(r)r” (3.12) 

converts (3.7) into the following differential equation : 

g ( r )  = 2r1-“  1 (3.13) 

which for the choice n = - 1 can be solved by taking the Laplace transform, 
G(s) = Jz g ( r )  e-sr dr. P(w) is then obtained directly as 

8nN2 
3 

P(w) = - G(2y):  

hence the scattering amplitude is given by 

[ y 2  + 2 y ( y 2  - 2 w p 2  - 01 
[ y  + ( y 2  - 2 0 ) ” 2 ] 2 [ y 2  +^U, ($  - 2 0 ) ” 2  - 0 1  

f ( w )  = -+roc-2w2(€.  C ’ ) ~ C N ~ ~ - ~  

[ y 2  + 2 y ( y 2  + 2 w p 2  + 01 
[ y  + ( y 2  + 2w)”2]2[y2 + y ( y 2  + 2w)”2 + w ]  

+ 
From equation (3.15) the total cross section is obtained as 

cT(w) = 4nco-’f,(w) = v n 2 N 2 r o c - 1 w -  3 ( €  . €’)(20 - y2)3’2,  w > 3 y 2 .  

Also we have the results 

w 6 i;,’ 1 [ y 2  + 2 y ( y 2  - 2 0 ) ” 2  - w ]  
[;, + ( y 2  - 2 w ) ” 2 ] 2 [ y 2  + y ( y 2  - 2w)”2 - 03 ’ + 

and 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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We now employ the results of equations (3.16), (3.17) and (3.18) to test 

do,(w) d o  
dR 02’  

(3.19) 
1 “  

87c2c2 !y2,2 

The left-hand side is obtained readily, 

256 rin2N4(c. c’)’ 
(3.20) 

The right-hand side of (3.19) is most conveniently treated by dividing the integral into 
the two intervals (0 , i y2 )  and ($y2 ,  CO). We then have 

45 c4y4 

c’)2N4c-47r2y-4j01 w2 d o  

[ l  +w+2(1+2w)”2] [ l  -w+2(1-2o)”2] +- [ i  + ( I  +241i214 [ i  + ( I  -241/214 
(3.21) 

Using the result 

[l +w+2(1+2w)”2] [1-0+2(1-2w)”2] 1 + jO1” o2 d o  ( [I + (1 + 2411214 [I + (1 - 2 4 9 4  

(3.22) 

we obtain the following: 

y 2 / 2  do,(o) d o  16 lo dRZ= 15 
- r i ( c .  ~ ’ ) ~ N ~ c - ~ n ~ y - ~ [ 1 8 9 $ -  15 ln(2‘I2+ 1)-2541. (3.23) 

Also, we have that 

128 4 [l + 0 + 2 ( 1 + 2 0 ) ” ~ ]  (1 -0)(2-40-w’) 
o + ( l + 2 0 ) ” 2 ] 2  - w4 

(3.24) 
Employing the result 

[1+0+2(1+20)”~]  (1 - o ) ( ~ - ~ w - o ~ )  
o+( l+2w)”2]2  o4 

- 

+ 36 ln(2112 + 1))  

we have that 

(3.25) 

” do,(w) do 
d o  w2 

2 4 - 4 2  - 7c N c yo(€. c’)2y-4 
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Therefore, combining (3.26) and (3.23) we have the result 

(3.27) 

which is identical with (3.20). This completes the verification of the sum rule (3.19) for 
the H -  ion within the framework of the asymptotic approximation. 

4. Discussion 

Sum rules are frequently the only means by which both experimental results and 
theoretically derived expressions can be tested. The rather basic assumptions under 
which the sum rules have been derived allow them to be applied widely. The example 
illustrated, the H-  ion, is a relatively simple test case, because of the absence of bound 
excited states for this ion. The scattering amplitude for the hydrogen atom has recently 
been obtained in closed form (Gavrila 1967, Gavrila and Costescu 1970). The final 
result is, however, rather complex, and the testing of sum rules of the type such as (2.25) 
becomes a more difficult proposition. 

The most useful application of sum rules such as (2.25) would be their utilization in 
the testing of experimentally derived relations for the scattering cross sections, based 
on both experimental and theoretical considerations. It is likely that if more relations 
of the form presented in 6 2 become available, a sufficient stimulus will be provided for 
expressing results for the total cross section via empirical relationships, which can then 
be tested using the appropriate sum rules. 

A number of the sum rules outlined in 0 2 require the availability of the total cross 
section, an experimental quantity, and the differential elastic scattering cross section 
for the forward direction, a quantity presently accessible only through calculation. 
Fairly accurate configuration-interaction calculations of transition matrix elements, 
necessary for the calculation of the scattering amplitude, are presently restricted to 
principally atomic systems, with very little accurate work having been carried out on 
molecular systems. With this situation likeqi to remain for at least the next few years, 
it would be of value if simple theoretical expressions for the forward differential cross 
section could be obtained, as in the case for the H-  ion. This approach is not, however, 
a complete substitute for accurate calculations of the scattering amplitude at any 
particular desired frequency. 
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