04/01/14 Workshop 8 part 1 and 2 Chem. 103, Spring 2014 Chapter 8 and 9 (Full points group quiz: 20)

No submission required

Chapter 8: Stoichiometry in aqueous solution

A. Precipitation Reaction

- i) Type 1: Reactant to reactant calculations Variation types
 - a) What is the molarity of the AgNO₃ solution if 5.00 mL was required to completely precipitate 30.094 mmol AgCl? (mmol stands for 10⁻³ mol)
 - b) How many mL of 0.200 M NaCl will be needed to completely precipitate 25.00 mL 0.100M AgNO₃?
 - c) What is the molarity of the NaCl solution if 5.00 mL was required to completely precipitate 25.00 mL 0.100M AgNO₃?

ii) **Type 2: Reactant to product calculations** Variation types

- d) What is the molarity of the NaCl solution if 25.00 mL was required to obtain 2.03 mol of AgCl solid?
- e) How many g of AgCl will be produced if 25.00 mL 0.100M AgNO₃ is completely precipitated?
- f) What is the molarity of the NaCl solution if 25.00 mL of the NaCl solution was required to obtain 5.094 g of AgCl solid as precipitate?
- iii) Type 3: Limiting reactant calculations (when one reactant is available in less than the stoichiometric amount, that reactant (limiting) dictates how much product will be formed) Variation types
 - g) How many g of AgCl will be produced if 25.00 mL 0.200M AgNO₃ and 25.00 mL of 0.100M NaCl?
 - h) How many moles of AgCl will be produced if 25.00 mL 0.100M AgNO₃ and 25.00 mL of 0.200M NaCl?
 - Which one of these is the limiting if 25.00 mL 0.500 M NaCl solution added to 25.00 mL 1.00M AgNO₃ to yield 1.7925 g of AgCl solid as precipitate?

Home-assigned reading

Section 8.4 (page 280) due at the beginning of your next lab Answer qns 8.4.1-8.4.5 on page 286 and bring it to your next lab (2.5 points)

B. Gas-forming Reaction

- i) **Type 1: Reactant to reactant calculations** Variation types
 - a) What is the molarity of the Na₂CO₃ solution if 5.00 mL was required to completely react to 50.01 mmol HCl? (mmol stands for 10⁻³ mol)
 - b) How many mL of 0.200 M Na₂CO₃ will be needed to completely react to 25.00 mL 0.100M HNO₃?
 - c) What is the mass of the $CaCO_3$ solid will be needed to completely react to 25.00 mL 0.100M HNO₃?
 - d) How many mL of 0.200 M H_2SO_4 will be needed to completely react to 25.0 g of K_2CO_3 ?

ii) **Type 2: Reactant to product calculations** Variation types

- e) What is the mass of the CO_2 will be produced and lost if 2.00g of lithium carbonate reacts to sufficient amount of hydrochloric acid?
- f) What is the mass lost in the form of hydrofluoric acid if 2.00g of calcium fluoride reacts to sufficient amount of sulfuric acid?
- g) What is the masses and formulae of the products formed in the above two reactions?
- iii) Type 3: Limiting reactant calculations (when one reactant is available in less than the stoichiometric amount, that reactant (limiting) dictates how much product will be formed) Variation types
 - h) How many moles of CO₂ will be produced and lost if 25.00 mL 0.200M Na₂CO₃ reacted to 25.00 mL of 0.100M HCl?
 - i) How many g of CO₂ will be produced and lost if 25.00 mL 0.100M Na₂CO₃ reacted to 50.00 mL of 0.200M HCl?
 - j) How many g of CO₂ will be produced and lost if 2.50g Na₂CO₃ reacted to 250.00 mL of 0.200M HCl?
 - k) How many g of CO₂ will be produced and lost if 25.00 mL 1.00M Na₂CO₃ reacted to 50.00 mL of 0.200M HCl?
- iv) Type 4: Reactant to product (gaseous) volume at STP (standard temperature (273.15 K) and pressure (1.000 atm)) Variation types
 - a) What is the molarity of the Na₂CO₃ solution if 5.00 mL was required to completely react to obtain 4.48 L of gas at STP?
 - b) How many mL of 0.200 M H₂SO₄ will be needed to produce 4.48 L of CO₂ from sufficient amount of CaCO₃ at STP?
 - c) What is the mass of the CaCO₃ solid will be needed to completely react to obtain 6.72 L of gas at STP?
 - d) What is the volume of the gas at STP, will be produced and lost if 25.00 mL 1.00M Na₂CO₃ reacted to 50.00 mL of 0.200M HCl?

Workshop 8 part 2 Chem. 103, Spring 2014 Chapter 8 and 9

C. Acid-base Reactions

- i) **Type 1: Reactant to reactant calculations** Variation types
 - a) What is the molarity of the NaOH solution if 5.00 mL was required to completely react to 50.01 mmol HCl? (mmol stands for 10⁻³ mol)
 - b) How many mL of 0.200 M Ca(OH)₂ will be needed to completely react to 25.00 mL 0.100M HNO₃?
 - c) What is the mass of the KOH solid will be needed to completely react to 25.00 mL 0.100M HNO₃?
 - d) How many mL of $0.200 \text{ M H}_2\text{SO}_4$ will be needed to completely react to 25.0 g of RbOH?

ii) **Type 2: Approximate pH (-log(H⁺)) calculations** Variation types

- e) What is the pH of the solution 2.394g of lithium hydroxide reacts to sufficient amount of hydrochloric acid?
- f) What is the pH of the solution 2.394 g of lithium hydroxide reacts to 100. mL of 0.900 M of hydrochloric acid?
- g) What is the pH of the solution 2.394 g of lithium hydroxide reacts to 115. mL of 0.900 M of hydrochloric acid?