04/01/14
Workshop 8 part 1 and 2
Chem. 103, Spring 2014
Chapter 8 and 9
(Full points group quiz: 20)
No submission required

Chapter 8: Stoichiometry in aqueous solution

A. Precipitation Reaction

i) Type 1: Reactant to reactant calculations Variation types
a) What is the molarity of the AgNO_{3} solution if 5.00 mL was required to completely precipitate 30.094 mmol AgCl ? (mmol stands for $10^{-3} \mathrm{~mol}$)
b) How many mL of 0.200 M NaCl will be needed to completely precipitate $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{AgNO}_{3}$?
c) What is the molarity of the NaCl solution if 5.00 mL was required to completely precipitate 25.00 mL 0.100 M AgNO 3 ?
ii) Type 2: Reactant to product calculations

Variation types
d) What is the molarity of the NaCl solution if 25.00 mL was required to obtain 2.03 mol of AgCl solid?
e) How many g of AgCl will be produced if $25.00 \mathrm{~mL} 0.100{\mathrm{M} \mathrm{AgNO}_{3} \text { is }}$ completely precipitated?
f) What is the molarity of the NaCl solution if 25.00 mL of the NaCl solution was required to obtain 5.094 g of AgCl solid as precipitate?
iii) Type 3: Limiting reactant calculations (when one reactant is available in less than the stoichiometric amount, that reactant (limiting) dictates how much product will be formed)

Variation types

g) How many g of AgCl will be produced if $25.00 \mathrm{~mL} 0.200 \mathrm{M} \mathrm{AgNO}_{3}$ and 25.00 mL of 0.100 M NaCl ?
h) How many moles of AgCl will be produced if $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{AgNO}_{3}$ and 25.00 mL of 0.200 M NaCl ?
i) Which one of these is the limiting if 25.00 mL 0.500 M NaCl solution added to $25.00 \mathrm{~mL} 1.00 \mathrm{M} \mathrm{AgNO}_{3}$ to yield 1.7925 g of AgCl solid as precipitate?

Home-assigned reading

Section 8.4 (page 280) due at the beginning of your next lab
Answer qns 8.4.1-8.4.5 on page 286 and bring it to your next lab (2.5 points)

B. Gas-forming Reaction

i) Type 1: Reactant to reactant calculations

Variation types
a) What is the molarity of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution if 5.00 mL was required to completely react to 50.01 mmol HCl ? (mmol stands for $10^{-3} \mathrm{~mol}$)
b) How many mL of $0.200 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ will be needed to completely react to $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{HNO}_{3}$?
c) What is the mass of the CaCO_{3} solid will be needed to completely react to $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{HNO}_{3}$?
d) How many mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be needed to completely react to 25.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$?
ii) Type 2: Reactant to product calculations

Variation types
e) What is the mass of the CO_{2} will be produced and lost if 2.00 g of lithium carbonate reacts to sufficient amount of hydrochloric acid?
f) What is the mass lost in the form of hydrofluoric acid if 2.00 g of calcium fluoride reacts to sufficient amount of sulfuric acid?
g) What is the masses and formulae of the products formed in the above two reactions?
iii) Type 3: Limiting reactant calculations (when one reactant is available in less than the stoichiometric amount, that reactant (limiting) dictates how much product will be formed)
Variation types
h) How many moles of CO_{2} will be produced and lost if 25.00 mL 0.200 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted to 25.00 mL of 0.100 M HCl ?
i) How many g of CO_{2} will be produced and lost if 25.00 mL 0.100 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted to 50.00 mL of 0.200 M HCl ?
j) How many g of CO_{2} will be produced and lost if $2.50 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted to 250.00 mL of 0.200 M HCl ?
k) How many g of CO_{2} will be produced and lost if $25.00 \mathrm{~mL} 1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted to 50.00 mL of 0.200 M HCl ?
iv) Type 4: Reactant to product (gaseous) volume at STP (standard temperature (273.15 K) and pressure (1.000 atm))
Variation types
a) What is the molarity of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution if 5.00 mL was required to completely react to obtain 4.48 L of gas at STP?
b) How many mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be needed to produce 4.48 L of CO_{2} from sufficient amount of CaCO_{3} at STP?
c) What is the mass of the CaCO_{3} solid will be needed to completely react to obtain 6.72 L of gas at STP?
d) What is the volume of the gas at STP, will be produced and lost if 25.00 $\mathrm{mL} 1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted to 50.00 mL of 0.200 M HCl ?

Workshop 8 part 2
Chem. 103, Spring 2014
Chapter 8 and 9

C. Acid-base Reactions

i) Type 1: Reactant to reactant calculations Variation types
a) What is the molarity of the NaOH solution if 5.00 mL was required to completely react to 50.01 mmol HCl ? (mmol stands for $10^{-3} \mathrm{~mol}$)
b) How many mL of $0.200 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ will be needed to completely react to $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{HNO}_{3}$?
c) What is the mass of the KOH solid will be needed to completely react to $25.00 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{HNO}_{3}$?
d) How many mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be needed to completely react to 25.0 g of RbOH ?
ii) Type 2: Approximate $\mathbf{p H}\left(-\log \left(\mathbf{H}^{+}\right)\right)$calculations

Variation types
e) What is the pH of the solution 2.394 g of lithium hydroxide reacts to sufficient amount of hydrochloric acid?
f) What is the pH of the solution 2.394 g of lithium hydroxide reacts to 100 . mL of 0.900 M of hydrochloric acid?
g) What is the pH of the solution 2.394 g of lithium hydroxide reacts to 115 . mL of 0.900 M of hydrochloric acid?

