02/24/14
Workshop 4
Chem. 103, Spring 2014
(Full points 20)
Completed reports to be submitted by $\mathbf{0 3 / 0 6} / \mathbf{2 0 1 4}, 2.00 \mathrm{PM}$ (no late submission)
A. In-class exercise ($\sim 20-30$ minutes) : Prediction of bonding in elements

Element	Formula of the stable ion	Name of the ions	Ground-state electron configuration (noble gas)	Charge
H				
He				
Li				
Be				
B				
C				
N				
O				
F				
Ne				
Na				
Mg				
Al				
Si				
P				
S				
Cl				
Ar				
K				
Ca				
Ga				
Ge				
As				
Se				
Br				
Kr				
Comments				

D-Block elements				
Element	Formulae of Ions		Ground-state electron onfiguration (noble gas)	Charge
Sc				
Ti				
V				
Cr				
Mn				
Fe				
Co				
Ni				
Cu				
Zn				

02/24/14, Workshop 4 (continued)
Chapter 4: Periodic trends of the Elements
B. Shielding and Effective Nuclear Charge
a) Carry out calculation of the effective nuclear charge, $Z_{\text {eff }}$ for the $2^{\text {nd }}$-row elements
b) Calculate the net force on the outermost shell using the effective nuclear charge for a constant distance, d
c) Explain the trend of size along periods
d) Explain the trend of size along groups
C. Short lecture on Ionization Energy (page 115)
a) Calculate the $Z_{\text {eff }}$ for Li, Na, and K .
b) Calculate the force on the outermost shell electron (information of radius on page 114) for Li, Na, and K .
c) Explain the trend of ionization energies along groups
D. Explain the trend of Ionization Energies along periods
E. Short lecture on Electron Affinity (page 118)
a) Calculate the $Z_{\text {eff }}$ for Cl, Br, and I
b) Calculate the force on the outermost shell electron (information of radius on page 114) for Cl, Br, and I .
c) Explain the trend of electron affinity along groups
F. Explain the trend of Electron Affinities along periods
G. Define isoelectronic species
H. Problems.4.47, 4.49, 4.53, 4.56, 4.57, 4.89, 4.91, 4.93, 4.101, 4.104

