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Solution to the Assigned Problems of Workshop 3 

Chem. 103, Spring 2014 

 

Chapter 3: Quantum theory and Electronic structure of Atoms 

Home-assigned problems (total of 21):  3.15, 3.17, 3.19, 3.47, 3.49, 3.51, 3.57, 3.59, 3.67, 3.71, 

3.72, 3.73, 3.74, 3.95, 3.97, 3.99, 3.101, 3.117, 3.119, 3.121, 3.123. 

 

--------------------- 

3.15 a. Setup: We are given the frequency of an electromagnetic wave and asked to 

calculate the wavelength.  Rearranging Equation 3.3 of the text to solve 

for wavelength gives: 
c

 


 

Solution: Substituting the frequency and the speed of light (3.00  10
8
 m/s) into the 

above equation, the wavelength is:  
8

6

13

3.00 10 m/s
3.5 10 m

8.6 10 /s

c 
    
 

3
3.5 10 nm   

 

b. Setup: We are given the wavelength of an electromagnetic wave and asked to 

calculate the frequency.  Rearranging Equation 3.3 of the text to solve for 

frequency gives: 
c

 


 

Solution: Because the speed of light is given in meters per second, it is convenient 

to first convert wavelength to units of meters.  Recall that 1 nm  1  10
–9

 

m (see Table 1.3 of the text).  We write: 
9

9 71 10  m
566  nm 566 10  m or 5.66 10  m

1 nm


 

     

 

Substituting in the wavelength and the speed of light (3.00  10
8
 m/s), the 

frequency is: 

 
8

14

9

3.00 10 m/s
5.30 10 /s

566 10 m

c




    
 

14
5.30 10 Hz   

 

  

3.17 Since the speed of light is 3.00  10
8
 m/s, we can write: 

 

8

8

1.61 km 1000 m 1 s
(1.3 10 mi)

1 mi 1 km 3.00 10 m
    



2
7.0 10 s  



Think 

About It: 

Would the time be different for other types of electromagnetic radiation? 

  

 

3.19 

8
2

1

3.00 10 m/s
3.26 10 m

9,192,631,770 s

c 




    


7
3.26 10 nm   

 

This radiation falls in the microwave region of the spectrum.  (See Figure 3.1 of the 

text.) 
 

---------------- 

3.47 Note that we use more significant figures than we usually do for the values of h and c for 

this problem. 
 

34 8

9

(6.6256 10 J s)(2.998 10 m/s)
=

656.3 10 m

hc 



  
 

 

19
3.027 10 JE

  

 

---------------- 

3.49 Strategy: We are given the initial and final states in the emission process.  We can 

calculate the energy of the emitted photon using Equation 3.8 of the text.  Then, 

from this energy, we can solve for the frequency of the photon, and from the 

frequency we can solve for the wavelength.   

Solution: From Equation 3.8 we write: 

18 18 19

2 2 2 2
f i

1 1 1 1
Δ 2.18 10  J 2.18 10  J 1.06 10  J

3 4
E

n n

  
   

                 
 

  

The negative sign for E indicates that this is energy associated with an 

emission process.  To calculate the frequency, we will omit the minus sign for 

E because the frequency of the photon must be positive.  We know that: 

E  h 

 

Rearranging the equation and substituting in the known values: 

 

 
19

34

Δ 1.06 10  J

6.63 10  J s

E

h






  

 
1.60  10

14
 s

–1
 or 1.60  10

14
 Hz 

 

We also know that  


c
.  Substituting the frequency calculated above into this 

equation gives: 

 

 8

14 1

3.00 10  m/s

1.60 10  s


 


1.88  10

–6
 m = 1.88  10

3
 nm 



 

This wavelength is in the infrared region of the electromagnetic spectrum (see 

Figure 3.1 of the text).   

  

------------------ 

3.51 
18

2 2
i

1 1
2.18 10  J

2
E

n


 

      
 

 

nf is given in the problem but we need to calculate E.  The photon energy is: 
 

 
34 8

19

9

(6.63 10 J s)(3.00 10 m/s)
= 4.58 10 J

434 10 m

hc
E






  
  

 
 

 

Since this is an emission process, the energy change E must be negative, or –4.58  10
–19

 

J. 

Substitute E into the following equation, and solve for ni.  
 

19 18

2 2
i

1 1
4.58 10  J 2.18 10  J

2 n

 
 

       
   

 
19

2 18 2
i

1 4.58 10 J 1
= 0.210 0.25 0.040

2.18 10 J 2n





  
     

    
 

 

1

0.040
 i 5n  

 
 

----------------- 

3.57 Strategy: We are given the mass and the speed of the honey bee and asked to calculate the 

de Broglie wavelength.  We need the de Broglie equation, which is Equation 

3.11 of the text.  Note that because the units of Planck’s constant are Js, m must 

be in kg and u must be in m/s                    (1 J  1 kgm
2
/s

2
).  

Solution: Because mass in this problem is given in g and speed is given in mph, we must 

first convert these to kg and m/s, respectively. 

 

m = 8.45 g 
g 1000

kg 1
0.00845 kg 

 

u = 
6.28 mi 1.61 km 1000 m 1 h

1 h 1 mi 1 km 3600 s
    2.81 m/s 

 



Using these values in Equation 3.11 we write: 

 

 
  

34
326.63 10  J s

2.79 10  m
0.00845 kg 2.81 m/s

h

mu


 

     
m 1

cm 100
 2.79  10

–30
 cm 

  

----------------- 

3.59 Strategy: Use Equation 3.11  to calculate velocity from the de Broglie wavelength: 

 
h

mu
   

Setup: Solving Equation 3.11 for velocity gives: 

λ

h
u

m
  

 

Planck’s constant, h, is 6.63 × 10
–34

 Js or 6.63 × 10
–34

 kgm
2
/s.  For the purpose 

of making the unit cancellation obvious, the mass must be in kilograms and the 

wavelength in meters. 

 

The mass of neutron is 1.67493 × 10
–24 

g (Table 2.1).  The mass in kilograms is: 

 

24 27

3

1 kg
1.67493 10  g 1.67493 10  kg

1 10  g

    
  

 
The wavelength is 10.5Å.  The wavelength in meters is: 

 
10

91 10  m
10.5 Å 1.05 10  m

1 Å




    

Solution: 

λ

h
u

m
  

 

  

34 2

279

6.63 10  kg·m /s

1.67493 10  kg1.05 10  m
u






 


377 m / s  

  

----------------- 

3.67 Rearranging Equation 3.13 to solve for the uncertainty in velocity, u, we write: 

 

   

34

3 7

6.63 10  J s
Δ

4 Δ 4 2.80 10  kg 6.75 10  m

h
u

m x 



 

 
  

 

-26
2.79×10  m / s  

 

This uncertainty is far smaller than can be measured.  Therefore, we are able to 



determine the speed of a macroscopic object with great certainty using a visible 

wavelength of light. 
 

----------------- 

3.71 Strategy: What are the relationships among n, ℓ, and mℓ? 

Setup: The angular momentum quantum number ℓ can have integral (i.e. whole 

number) values from 0 to n – 1.  In this case n  2, so the allowed values of the 

angular momentum quantum number, ℓ, are 0, corresponding to an s orbital; and 

1, corresponding to a p orbital. 
 

Each allowed value of the angular momentum quantum number labels a 

subshell.  Within a given subshell (label ℓ) there are 2ℓ  1 allowed energy 

states (orbitals) each labeled by a different value of the magnetic quantum 

number.  The allowed values run from –ℓ through 0 to ℓ (whole numbers 

only).  For the subshell labeled by the angular momentum quantum number ℓ  

1, the allowed values of the magnetic quantum number, mℓ, are –1, 0, and 1.  

For the other subshell in this problem labeled by the angular momentum 

quantum number ℓ  0, the allowed value of the magnetic quantum number is 0. 

Solution: If the allowed whole number values run from –1 to 1, are there always 2ℓ  1 

values?  Why? 

  

3.72 We are given the principal quantum number, n  3.  The possible ℓ values range from 0 to (n – 

1).  Thus, 

there are three possible values of ℓ:  0, 1, and 2, corresponding to the s, p, and d orbitals, 

respectively.  The values of mℓ can vary from –ℓ to ℓ.  The values of mℓ for each ℓ value are: 
 

 ℓ  0: mℓ  0 ℓ  1: mℓ  –1, 0, 1 ℓ  2: mℓ  –2, –1, 0, 1, 

2 
 

3.73 For n  4, the allowed values of ℓ are 0, 1, 2, and 3  [ℓ  0 to (n – 1), integer values].  
These ℓ values correspond to the 4s, 4p, 4d, and 4f subshells.  These subshells each have 

1, 3, 5, and 7 orbitals, respectively (number of orbitals  2ℓ  1). 

 
 

----------------- 

3.74 The allowed values of ℓ are 0, 1, 2, 3, and 4.  These correspond to the 5s, 5p, 5d, 5f, and 

5g subshells.  These subshells each have one, three, five, seven, and nine orbitals, 

respectively. 
 

----------------- 

3.95 The electron configurations for the elements are 

a. N: 1s
2
2s

2
2p

3
 There are three p-type electrons. 



b. Si: 1s
2
2s

2
2p

6
3s

2
3p

2
 There are six s-type electrons. 

c. S: 1s
2
2s

2
2p

6
3s

2
3p

4
 There are no d-type electrons. 

  

3.97 For aluminum, there are two 2p electrons missing.  The electron configuration should be 

1s
2
2s

2
2p

6
3s

2
3p

1
.   

 

For boron, there are too many 2p electrons.  The electron configuration should be 

1s
2
2s

2
2p

1
.   

 

For fluorine, there are too many 2p electrons.  The correct electron configuration is 

1s
2
2s

2
2p

5
.  (The configuration shown is that of the F

–
 ion.)   

 

----------------- 

3.99 To determine the number of unpaired electrons, we must look at the electron configuration 

of each of the elements.  Since a p shell has 3 orbitals, according to Hund’s rule once all 

of the orbitals are singly occupied, additional electrons will have to pair with those already 

in orbitals (see Section 3.9 of text). 

 

B: 1s
2
2s

2
2p

1
 There is one unpaired electron.   

 

C: 1s
2
2s

2
2p

2
 There are two unpaired electrons. 

 

N: 1s
2
2s

2
2p

3
 There are three unpaired electrons. 

 

O: 1s
2
2s

2
2p

4
 There are two unpaired electrons. 

 

F: 1s
2
2s

2
2p

5
 There is one unpaired electron. 

 

In order of increasing number of unpaired electrons, we have B = F < C = O < N. 
 

----------------- 

3.101 To determine the number of unpaired electrons, we must look at the electron configuration 

of each of the elements.  Those with all paired electrons are diamagnetic; and those with 

one or more unpaired electrons are paramagnetic. 

a. Rb: [Kr]5s
1
   There is one unpaired electron; paramagnetic 

b. As: [Ar]4s
2
3d

10
4p

3
   There are three unpaired electrons; paramagnetic 

c. I: [Kr]5s
2
4d

10
5p

5
   There is one unpaired electron; paramagnetic 

d. Cr: [Ar]4s
1
3d

5
   There are six unpaired electrons; paramagnetic 

e. Zn: [Ar]4s
2
3d

10
   There are no unpaired electrons; diamagnetic 

  

----------------- 



3.117 Part (b) is correct in the view of contemporary quantum theory.  Bohr’s explanation 

of emission and absorption line spectra appears to have universal validity.  Parts (a) 

and (c) are artifacts of Bohr’s early planetary model of the hydrogen atom and are 

not considered to be valid today. 
 

----------------- 

3.119 a. With n  2, there are n
2
 orbitals  2

2
  4.  ms  ½, specifies 1 electron per orbital, for a 

total of 4 electrons (one e
–
 in the  2s and 2p orbitals). 

b. n  4 and mℓ  1, specifies one orbital in each subshell with ℓ  1, 2, or 3 (i.e., a 4p, 

4d, and 4f orbital). Each of the three orbitals holds 2 electrons for a total of 6 electrons. 

c. If n  3 and ℓ  2, mℓ has the values 2, 1, 0, –1, or –2.  Each of the five orbitals can hold 

2 electrons for a total of 10 electrons  (2 e
–
 in each of the five 3d orbitals). 

d. If n  2 and ℓ  0, then mℓ can only be zero.  ms  –½ specifies 1 electron in this orbital 

for a total of 1 electron  (one e
–
 in the 2s orbital). 

e. n  4, ℓ  3 and mℓ  –2, specifies one 4f orbital.  This orbital can hold 2 electrons. 

  

----------------- 

3.121 In the case of the red light, no electrons were emitted.  As a result, the ammeter showed no 

reading, since no current was flowing.  When the light source was changed to blue light, 

electrons were ejected and current flowed through the circuit, as measured by the 

ammeter.  The frequency of the red light must be below the threshold frequency; the 

frequency below which no electrons can be ejected.  The blue light must meet or 

exceed the threshold frequency. 
a. Increasing the intensity of the red light would result in no change.  A higher intensity 

light will have more photons, but the energy of those photons will be the same.  Below 

the threshold frequency no electrons can be ejected, no matter how intense the light. 

b. Increasing the intensity of the blue light will result in more electrons being ejected from 

the metal’s surface.  Since blue light is above the threshold frequency, a more intense 

beam of light, which consists of a larger number of photons, will eject more electrons 

than a less intense beam of the same light.  The reading on the ammeter would be 

higher than it is for the lower intensity blue light, as more current flows through the 

system. 

c. Violet light has a higher frequency than blue light, therefore a higher energy value.  As 

a result, it must also be above the threshold frequency.  The kinetic energy of the 

electrons ejected from the metal will be higher than the kinetic energy for electrons 

ejected by blue light.  As long as the frequency of the light is above the threshold 

frequency, the number of electrons ejected depends on the intensity of the light (the 

number of photons), not the frequency of the light.  The ammeter will indicate that 

current is flowing through the circuit. 

  



----------------- 

3.123 a. First, we can calculate the energy of a single photon with a wavelength of 633 nm. 
 

34 8
19

9

(6.63 10 J s)(3.00 10 m/s)
3.14 10 J

633 10 m






  
   

 

hc
E  

 

The number of photons produced in a 0.376 J pulse is: 
 

19

1 photon
0.376 J

3.14 10 J
 



18
1.20 10 photons  

b. Since a 1 W  1 J/s, the power delivered per a 1.00  10
–9

 s pulse is: 
 

8

9

0.376 J
3.76 10 J/s

1.00 10 s
  



8
3.76 10 W

 
 

Compare this with the power delivered by a 100-W light bulb! 

  

----------------- 

 


