Biosynthesis of Amino Acids

Chem 454: Biochemistry II University of Wisconsin-Eau Claire

Biosynthesis of Amino Acids

Introduction

 Biosynthetic pathways for amino acids, nucleotides and lipids are very old

- Biosynthetic (anabolic) pathways share common intermediates with the degradative (catabolic) pathways.
- The amino acids are the building blocks for proteins and other nitrogen-containing compounds

Introduction

Nitrogen Fixation Reducing atmospheric N₂ to NH₃ Amino acid biosynthesis pathways Regulation of amino acid biosynthesis. Amino acids as precursors to other biological molecules. • e.g., Nucleotides and porphoryns

Introduction

 Nitrogen fixation is carried out by a few select anaerobic micororganisms

The carbon backbones for amino acids come from glycolysis, the citric acid cycle and the pentose phosphate pathway.

 The L-stereochemistry is enforced by transamination of α-keto acids

1. Nitrogen Fixation

- Microorganisms use ATP and ferredoxin to reduce atmospheric nitrogen to ammonia.
 - 60% of nitrogen fixation is done by these microorganisms
 - 15% of nitrogen fixation is done by lighting and UV radiation.
 - 25% by industrial processes
 - Fritz Haber (500°C, 300 atm)

 $N_2 + 3H_2 \rightarrow 2N_2$

1. Nitrogen Fixation

Enzyme has both a reductase and a nitrogenase activity.

1.1 The Reductase (Fe protein)

Contains a 4Fe-4S center • Hydrolysis of ATP causes a conformational change that aids the transfer of the electrons to the nitrogenase domain (MoFe protein)

1.1 The Nitrogenase (MoFe Protein)

The nitrogenase component is an α₂β₂ tetramer (240 kD) • Electrons enter the *P*-cluster

1.1 The Nitrogenase (MoFe Protein)

An Iron-Molybdenum cofactor for the nitrogenase binds and reduces the atmospheric nitrogen.

1.2 Assimilation of Ammonium Ion

The ammonium ion is assimilated into an amino acid through glutamate and glutamine

 Most amino acids obtain their α-amino group from glutamate by transamination.

The sidechain nitrogen of glutamine is the nitrogen source for the sidechain nitrogens of tryptophan and histidine.

1.2 Assimilation of Ammonium Ion Glutamate dehydrogenase

 NH_4^+ + α -ketoglutarate + NADPH + H⁺ =

glutamate + NADP⁺ + H₂O

2. Amino Acid Biosynthesis

The biosynthetic pathways can be grouped into families:

2.1 Essential Amino Acids

T/	TABLE 24.1 Basic set of 20 amino acids acids				
	acius				
Z	Nonessential	Essential			
/	Alanine	Histidine			
	Arginine	Isoleucine			
	Asparagine	Leucine			
T	Aspartate	Lysine			
	Cysteine	Methionine			
	Glutamate	Phenylalanine			
	Glutamine	Threonine			
	Glycine	Tryptophan			
	Proline	Valine			
	Serine				
	Tyrosine				

2.2 Aspartate and Alanine

Transaminations:

Oxaloacetate + glutamate \rightarrow aspartate + α -ketoglutarate

Pyruvate + glutamate \rightarrow alanine + α -ketoglutarate

2.2 Aspartate and Alanine

Transaminations:

2.3 Asparagine

Amidation of aspartate

2.4 Proline and Arginine

Reduction of Glutamate

2.5 Serine and Glycine

Oxidation of 3-phosphoglycerate

2.5 Serine and Glycine

Serine transhydroxymethylase produces glycine from serine

2.6 Tetrahydrofolate

In the news....pet food poison!

Pet Food Poison

2.5 Tetrahydrofolate

ABLE 24.2 One-carbon groups carried by tetrahydrofolate			
Oxidation state	Group		
Most reduced (= methanol)	-CH3	Methyl	
Intermediate (= formaldehyde)	-CH2-	Methylene	
Most oxidized (= formic acid)	–CHO –CHNH –CH =	Formyl Formimino Methenyl	

2.5 Tetrahydro -folate

26

2.6 Methionine

Methylation of homocysteine

2.7 S-Adenosylmethionine (SAM)

Tetrahydrofolate does not have sufficient methyl transfer potential for many biosynthetic methylation reactions

2.7 S-Adenosylmethionine

DNA methylation

2.10 Aromatic Amino Acids

Example of essential amino acid synthesis Involve Shikimate and Chorismate intermediates

2.10 Aromatic Amino Acids

Chorismate:

2.10 Tyrosine and Phenylalanine

2.10 Tryptophan

2.10 Roundup

Glycophate inhibites the enzyme that converts 5-Enolpyruvylshikimate 3-phosphate to chorismate.

3. Regulation of Amino Acid Biosynthesis
Amino acid biosynthesis is regulated by feedback inhibition.
The first committed step in a biosynthetic pathway

is usually to the one that is regulated.

3. Regulation of Amino Acid Biosynthesis

Example: Serine biosynthesis

3-Phosphoglycerate dehydrogenase is inhibited by serine.

3. Regulation of Amino Acid Biosynthesis

Example: Serine biosynthesis • 3-Phosphoglycerate dehydrogenase

Combination of feedback inhibition and activation

The regulatory binding domain for threonine deaminase is similar to that found in 3-phosphoglycerate dehydrogenase.

Threonine deaminase (single-chain regulatory domain)

Enzyme multiplicity

- Example: Aspartokinase
 - Threonine
 - Methionine
 - Lysine

Cumulative feedback inhibition Example: Glutamine Synthetase

- Glutamine is the sources for nitrogen in the synthesis of
 - tryptophan histidine
 - carbamoyl phsphate
 - glucosamine 6-phosphate
 - cytidine triphosphate
 - adenosine monophosphate

Cumulative feedback inhibition Example: Glutamine Synthetase

Side view

Cumulative feedback inhibition Glutamine Synthetase activity is also modulated by and enzymatic cascade

Cumulative feedback inhibition
 Glutamine Synthetase activity is also modulated by

and enzymatic cascade

45

Cumulative feedback inhibition-More regulation!

• The regulatory protein P (P_A or P_D)

Amino acids are precursors for many biomolecules

X = OH, $R = CH_3$ Epinephrine X = OH, R = H Norepinephrine X = H, R = H **Dopamine**

Serotonin (5-hydroxytryptamine)

 $^{-}$ OOC $^{-}$ CH $_2$ $^{-}$ CH $_2$ $^{-}$ CH $_2$ $^{-}$ NH $_3^{+}$ γ-Aminobutyric acid (GABA)

Histamine

4. Amino Acid Derivatives: some hallucinogenic and other amines

4. Amino Acid Derivatives The Melanin Chemical Pathway

4.1 Glutathione

GlutathioneSulfhydryl buffer and antioxiidant

4.2 Nitric Oxide

Nitric oxide is a short-lived signal molecule. Formed from arginine

4.3 Porphyrins

Porphyrins are synthesized from glycine an succinyl coenzyme A (PLP mechanism)

The mechanism of action of the PLP-dependent enzyme, \vec{v} -aminolevulinate synthase. The reaction steps are (1) transimination, (2) PLP-stabilized carbanion formation,

(3) C—C bond formation, (4) CoA elimination.
(5) decarboxylation facilitated by the PLP-Schiff base, and
(6) transimination yielding ALA and regenerating the PLP-enzyme.

57

4.3 Porphyrins

58

4.3 Porphyrins

4.3 Porphyrins-degradation

4.3 Porphyrins-disease states

Jaundice

- Neonatal
- Transfusion
- Hepatitis/cirrhosis

Porphyrias

 porphobilinogen deaminase (hepatic porphyrias; acute intermittent porphyria)

 Uroporphyrinogen synthase, ferrochelatase (erythropoietic porphyrias)