Chapter 16 Glycolysis and Gluconeogenesis

The Musical?

Chapter 16

TABLE 16.1Starting and ending pointsof various fermentations

Glucose	\longrightarrow	lactate
Lactate	\rightarrow	acetate
Glucose	\longrightarrow	ethanol
Ethanol	\longrightarrow	acetate
Arginine	\longrightarrow	carbon dioxide
Pyrimidines	\longrightarrow	carbon dioxide
Purines	\longrightarrow	formate
Ethylene glycol	\longrightarrow	acetate
Threonine	\longrightarrow	propionate
Leucine	\longrightarrow	2-alkylacetate
Phenylalanine	\longrightarrow	propionate

Note: The products of some fermentations are the substrates for others.

Reverse aldol condensation

http://www.usm.maine.edu/~newton/Chy251_253/Lectures/Aldol%20Condensation/AldolFS.html

TIM prevents this!

Enediol intermediate

Methyl glyoxal

Dehydrogenase NAD binding motif: the Rossmann fold

If you are Lactose intolerant.....

PFK (1): EXTREME regulation

ATP -AMP+ pH-Citrate-F2,6 BP

Marmite..Yummm....

Water Soluble Vitamins	Fat Soluble Vitamins
$\begin{array}{c} \mbox{Thiamin} (B_1) & B_1 \mbox{Deficiency} \mbox{ and Disease} \\ \mbox{Riboflavin} (B_2) & B_2 \mbox{Deficiency} \mbox{ and Disease} \\ \mbox{Niacin} (B_3) & B_3 \mbox{Deficiency} \mbox{ and Disease} \\ \mbox{Pantothenic} \mbox{Acid} (B_5) \\ \mbox{Pyridoxal}, \mbox{Pyridoxamine}, \mbox{Pyridoxine} (B_6) \\ \mbox{Biotin} & Cobalamin (B_{12}) & B_{12} \mbox{Deficiency} \mbox{ and Disease} \\ \mbox{Folic Acid} & Folic \mbox{Acid} \\ \mbox{Folate Deficiency} \mbox{ and Disease} \\ \mbox{Ascorbic Acid} \end{array}$	Vitamin A Gene Control by Vitamin A Role of Vitamin A in Vision Additional Roles of Vitamin A Clinical Significances of Vitamin A Vitamin D Clinical Significances of Vitamin D Vitamin E Clinical Significances of Vitamin E Vitamin K Clinical Significance of Vitamin K

Overall Muscle Regulation

Liver Regulation of Glycolysis

1 μM F-2,6-BP

0.1 μM

Relative velocity

Figure 16-30 Biochemistry, Sixth Edition

Another regulator: Pyruvate Kinase

Getting Glucose into cells

TABLE 16.4 Family of glucose transporters					
	Name	Tissue location	<i>K</i> _m	Comments	
	GLUT1	All mammalian tissues	1 mM	Basal glucose uptake	
	GLUT2	Liver and pancreatic β cells	15–20 mM	In the pancreas, plays a role in regulation of insulin In the liver, removes excess glucose from the blood	
	GLUT3	All mammalian tissues	1 mM	Basal glucose uptake	
	GLUT4	Muscle and fat cells	5 mM	Amount in muscle plasma membrane increases with endurance training	
	GLUT5	Small intestine	_	Primarily a fructose transporter	

Glycolysis related enzymes (HIF induced) can increase viability of tumors

TABLE 16.5Proteins in glucosemetabolism encoded by genesregulated by hypoxia-induciblefactor

GLUT1 GLUT3 Hexokinase Phosphofructokinase Aldolase Glyceraldehyde 3-phosphate dehydrogenase Phosphoglycerate kinase Enolase Pyruvate kinase Lactate dehydrogenase

When times are tough: the tough make glucose!

Balance Sheet:

Making glucose from pyruvate:

Putting glucose into the bloodstream: liver only need apply

Reciprocal regulation: Know metabolic logic behind these

The Cori Cycle: Oh my aching legs!!

Figure 16-34 Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company