Lecture 5 - Oxidative Phosphorylation

Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

Introduction

Oxidation and Phosphorylation are coupled by transmembrane proton fluxes:

1. Mitochondria

Oval-shaped organelles 0.5 μm X 2 μm Contain Citric acid cycle enzymes Fatty acid oxidation enzymes respiratory assembly

2. Electron Transfer

The reoxidation of NADH and FADH2 by molecular oxygen is highly exergonic.

2.1 High Energy Electrons

The ability of a substance to participate in an oxidation/reduction reaction is measured by its reduction potential.

 $\Delta G^{0'} = -n \mathcal{F} \Delta E'_{0}$

2.1 Standard Reduction Potentials

Oxidant	Reductant	n	E'_0 (V)	
Succinate $+ CO_2$	α-Ketoglutarate	2	-0.67	
Acetate	Acetaldehyde	2	-0.60	
Ferredoxin (oxidized)	Ferredoxin (reduced)	1	- 0.43	
2 H^+	H_2	2	-0.42	
NAD ⁺	$NADH + H^+$	2	- 0.32	
NADP ⁺	$NADPH + H^+$	2	- 0.32	
Lipoate (oxidized)	Lipoate (reduced)	2	- 0.29	
Glutathione (oxidized)	Glutathione (reduced)	2	- 0.23	
FAD	$FADH_2$	2	- 0.22	
Acetaldehyde	Ethanol	2	- 0.20	
Pyruvate	Lactate	2	-0.19	
Fumarate	Succinate	2	0.03	
Cytochrome $b(+3)$	Cytochrome $b(+2)$	1	0.07	
Dehydroascorbate	Ascorbate	2	0.08	
Ubiquinone (oxidized)	Ubiquinone (reduced)	2	0.10	
Cytochrome c (+3)	Cytochrome $c(+2)$	1	0.22	
Fe (+3)	Fe (+2)	1	0.77	
$\frac{1}{2}O_2 + 2H^+$	H_2O	2	0.82	

Note: E'_0 is the standard oxidation-reduction potential (pH 7, 25°C) and n is the number of electrons transferred. E'_0 refers to the partial reaction written as $Oxidant + e^- \longrightarrow reductant$

Problem

Using the data given in Table 18.1, calculate the standard free energy change for transferring 2 electrons from NADH to 1/20₂

Matrix

Membrane

H+

ADP

+ P;

to form water.

02'

2.2 Formation of Proton Gradient

The oxidation of NADH by O₂ drives formation of a proton gradient across the mitochondrial inner membrane

Problem

If the *pH* of the mitochondrial intermembrane space is 6.8 while the *pH* of the mitochondrial matrix is 8.2, what the free energy change for transporting one proton (H^+) out of the mitochondrial matrix if the membrane potential is 0.14 V?

Η

2.3 Electron Transfer

The rate of electron transfer is dependent up two factors:

Driving Force

Distance

3. Respiratory Chain

The respiratory chain consists of four complexes

Three proton pumps

Physical link to the citric acid cycle

3. Respiratory Chain

ABLE 18.2 Components of the mitochondrial electron-transport chain								
				Oxidant or reductant				
Enzyme complex	Mass (kd)	Subunits	Prosthetic group	Matrix side	Membrane core	Cytosolic side		
NADH-Q oxidoreductase	880	≥ 34	FMN Fe-S	NADH	Q			
Succinate-Q reductase	140	4	FAD Fe-S	Succinate	Q			
Q-cytochrome <i>c</i> oxidoreductase	250	10	Heme $b_{\rm H}$ Heme $b_{\rm L}$ Heme c_1 Fe-S		Q	Cytochrome c		
Cytochrome c oxidase	160	10	Heme a Heme a_3 Cu _A and Cu _B			Cytochrome c		

Sources: J. W. DePierre and L. Ernster, Annu. Rev. Biochem. 46(1977):215; Y. Hatefi, Annu Rev. Biochem. 54(1985);1015; and J. E. Walker, Q. Rev. Biophys. 25(1992):253.

3. Respiratory Chain

3. Carriers Between Complexes

Coenzyme Q (Ubiquinone) carries the electrons from Complexes I & II to Complex III

3. Carriers Between Complexes

Cytochrome c is a small heme protein that carries the electrons from Complex III to Complex IV

High-Potential electrons of NADH enter the respiratory chain at NADH-Q Oxidoreductase

 NAD^+

 $+ QH_2$

4 H+_{cvtosol}

NADH + Q + $5 H^+_{matrix}$

The electrons from NADH are transferred to a bound FMN

The electrons from FMNH₂ are then transferred to a series of iron-sulfur centers.

The electrons from 4Fe-4S centers are transferred to Q.

3.2 Succinate-Q Reductase Complex

3.2 Succinate-Q Reductase Complex

Succinate dehydrogenase from the citric acid cycle is a component of the Succinate-Q Reductase complex

3.2 Succinate-Q Reductase Complex

 $FADH_2$ \rightarrow Fe-S centers \rightarrow mobile QH₂

No hydrogens are pumped out of the mitochondrial matrix

Q + 2 Cyt c_{red} + 4 $H^+_{cytosol}$

Electron flow from ubiquinol to cytochrome c through Q-cytochrome c oxidoreductase

27

Q + 2 Cyt c_{red} + 4 $H^+_{cytosol}$

First QH₂ **Electron 1** \rightarrow 2Fe-2S center \rightarrow cyt c₁ → mobile cyt c **Electron 2** → cyt b → cyt b $\rightarrow Q \bullet^-$

Q + 2 Cyt c_{red} + 4 $H^+_{cytosol}$

Second QH₂ **Electron 1** \rightarrow 2Fe-2S center \rightarrow cyt c₁ → mobile cyt c **Electron 2** → cyt b \rightarrow cyt b_L $\rightarrow QH_2$

The Q cycle:

 $QH_2 + 2 Cyt c_{ox} + 2 H^+_{matrix} \longrightarrow Q + 2 Cyt c_{red} + 4 H^+_{cytosol}$

Cytochrome c **Oxidase catalyzes** the reduction of molecular oxygen to water Cu_A/Cu_A Heme a Heme a_3/Cu_B Fe(3+)/Cu(+2)

First cyt c $\rightarrow Cu_A/Cu_A$ \rightarrow Heme a \rightarrow Heme a_3/Cu_B Fe(3+)/Cu(+1)

 $4 \operatorname{Cyt} \mathbf{c}_{red} + 4 \operatorname{H}^+_{matrix} + O_2 \longrightarrow 4 \operatorname{Cyt} \mathbf{c}_{ox} + 2 \operatorname{H}_2 O$

Second cyt c $\rightarrow Cu_A/Cu_A$ \rightarrow Heme a \rightarrow Heme a_3/Cu_B Fe(2+)/Cu(+1)

→ Cu_A/Cu_A → Heme a → Heme a_3/Cu_B Fe(2+)O=OCu(+1)

→ Cu_A/Cu_A → Heme a → Heme a_3/Cu_B Fe(3+)-O-O-Cu(+2)

 $\rightarrow Cu_A/Cu_A$ $\rightarrow Heme a$ $\rightarrow Heme a_3/Cu_B$ Fe(3+)-O-O-Cu(+2)

Third cyt c + H⁺ $\rightarrow Cu_A/Cu_A$ \rightarrow Heme a \rightarrow Heme a_3/Cu_B Fe(4+)=OHO-Cu(+2)

Fourth cyt c + H⁺ $\rightarrow Cu_A/Cu_A$ \rightarrow Heme a \rightarrow Heme a_3/Cu_B Fe(3+)-OH HO-Cu(+2)

+ 2 H⁺ $\rightarrow Cu_A/Cu_A$ \rightarrow Heme a \rightarrow Heme a_3/Cu_B Fe(3+)/Cu(+2) $\rightarrow 2 H_2O$

In addition to the 4 H+ that are taken up from the matrix side to make the 2 H2O, 4 H+'s are also pumped across the membrane.

 $4 \operatorname{Cyt} \mathbf{c}_{red} + 8 \operatorname{H}^{+}_{matrix} + O_2 \longrightarrow$ $4 \operatorname{Cyt} \mathbf{c}_{ox} + 2 \operatorname{H}_2 O + 4 \operatorname{H}^{+}_{matrix}$

3.6 Protective Enzymes

The ability of the Fe/Cu center to hold the partially reduced oxygen intermediates is important because of the cellular toxicity of these intermediates:

 $O_2 + e^- \rightarrow O_2^-$ (superoxide radical)

 $O_2 \bullet^- + e^- \rightarrow O_2^{2-}$ (peroxide ion)

These toxic intermediates are scavanged by the enzymes superoxide dismutase and catalase $2 O_2 \bullet^- + H^+ \rightarrow O_2 + H_2 O_2$ (superoxide dismutase, SOD) $2 H_2 O_2 \rightarrow O_2 + 2 H_2 O$ (catalase) 3.7 Conformation of Cytochrome c Oxidase

Throughout evolution the structure of cytochrome c has been highly conserved.

3.7 Conformation of Cytochrome c Oxidase

	arcal	103 A 61	a sama I	1 ma 1 m []	L DI L	lia a wa U	103 0 10	lla no para	ે હાય મુખ્યત્વે માટે છે.	A 100 A 1	Čir de la
Human	GDVEKGKKI	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGYSYTA	ANKNKGT I WG	EDTIMEYLEN	PKKYIPGTKM	IPVGIKKKEE	RADLIAYLKK	ATNE
Chimpanzee	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLEGRKT	GOAPGYSYTA	ANKNKG11WG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAVLKK	ATNE
Spider monkey	GDVFKGKRIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOASGETYTE	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLER	ATNE
Macaque	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGYSYTA	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATNE
Cow	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHG.FGRKT	GQAPGESYTD	ANKNKGITWG	BETLMEYLEN	PKKYIPGTKM	TFAGIKKKGE	REDLIAYLKK	ATNE
Dog	GDVERGREIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLEGRKT	GQAPGESYTD	ANKNKGITWG	EETEMEYLEN	PKKYIPGTKM	IFAGIKKTGE	RADLIAYLKK	ATKE
Gray whale	GDVEKGKKIF	VQKCAQCHTV	EKOGKHKTGP	NLHGLFGRKT	GQAVG SYTD	ANKNEGITWG	EETLMEYLEN	PKKYIPGTKM	TEAGLKKKGE	RADLIAYLEK	ATNE
Horse	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NUHGLEGRET	GQAPGETYTD	ANKNKGITWK	EETLMEYLEN	PKKYIPGTKM	TEAGIKKKTE	REDLIAYLKK	ATNE
Zebra	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTOP	NLHGLEGRKT	GQAPGESYTD	ANKNKGITWK	BETLMEYLEN	PKKYIPGTKM	FAGIKKKTE	REDLIAYLKK	ATNE
Rabbit	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAVGESYTD	ANKNKOLTWO	EDTLMEYLEN	PKKYIPGTKM	IFAGIKKKDE	RADLIAYLKK	ATNE
Kangaroo	GDVERGREIF	VQKCAQCHTV	EKOGKHKTOP	NLHGIFGRKT	GOAPOPTYTD	ANKNKGIIWG	EDTIMEYLEN	PKKYIPGTKM	1FAG1KKKGE	RADLIAYLER	ATNE
Duck	GDVEKGKKIF	VQKCSQCHTV	EKOGKHKTOP	NLHGEFORKT	GQAEGESYTD	ANKNKGITWO	EDTIMEYLEN	PKKYIPGTKM	IFAGIKKKSE	RADLIAYLED	ATAK
Turkey	GDIEKGKKIF	VQKCSQCHTV	HEOGKHETOP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTEMEYLEN	PKKYIPGTKM	I FAG IKKKSE	RVDLIAYLKD	ATSK
Chicken	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	TEAGIKKKSE	RYDLIAYLKD	ATSK
Pigeon	GDIEKGKKIF	VQKCSQCHTV	EKGCKHKTOP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWO	EDTLMEYLEN	PKKYIPGTKM	TFAGIKKKAE	RADLIAYLKQ	ATAK
King penguin	GDIEKGKKIF	VQKCSQCHTV	EKOGKHKTGP	NLHGIFGRET	GQAEGES YTD	ANKNKGITWG	EDTIMEYLEN	PKKYIPGTKM	IFAGIKEKSE	RADLIAYLED	ATSK
Snapping turtle	GDVEKGKKIP	VQKCAQCHTV	EKOGKHKTGP	NLNGL1 GRKT	GQAEGESYTE	ANKNKGITWG	BETIMEYLEN	PKKYIPGTKM	IFAGIKKKAE	RADLIAYLED	ATSK
Alligator	GDVEKGKKIP	VQKCAQCHTV	EKGGKHKTGP	NLBGLIGRET	GQAPGPSYTE	ANKNKGITWG	EETIMEYLEN	PKKYIPGTKM	1FAGIKKKPE	RADLIAYLKE	ATSN
Bull frog	GDVEKGKKIF	VQECAQCHTV	EKGGKHKVGP	NLYGLI GRKT	GQAAGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	1FAGIKKKGE	RODLIAYLKS	ACSK
Tura	GDVAKGKKTF	VQKCAQCHTV	ENGGKHKVGP	NLWGLFGRKT	GQAEGYSYTD	ANKSKGIVWN	ENTLMEYLEN	PKKYIPGTKM	I FAG I KKKGE	RODLVAYLKS	ATS
Dógfish	GDVEKGKKWF	VQKCAQCHTV	ENGGKHKTGP	NLSGLFGRKT	GQAQGESYTD	ANKSKGITWQ	QETLRIVLEN	PKKYIPGTKM	IFAGIKKKSE	RODLIAYLKK	TAAS
Starfish	GQVEKGKKIF	VQRCAQCHTV	EKAGKHKTGP	NLNGILGRKT	GQAAGESYTD	ANRNKGITWK	NETLEEYLEN	PKKYIPGTKM	VFAGLKKQKE	RODLIAYLEA	ATK
Fruit fly	GDVEKGKKLP	VQRCAQCHTV	EAGGKHKVGP	NLHG. I GRKT	GQAAGFAYTD	ANKAKGITWN	EDTLFEYLEN	PKKYIPGTKM	I FAGLKKPNE	RGDLIAYLKS	ATK
Silkmoth	GNAENGKKIF	VQRCAQCHTV	EAGGKHKVGP	NLHGFYGRKT	GQAPGESYSN	ANKAKGITWG	DUTLFEYLEN	PKKYLPGTKM	VFAGLKKANE	RADLIAYLKE	STK
Pumpkin	GNSKAGEKIF	KTKCAQCHTV	DKGAGHKQGP	NLNGLFGRQS	GTTPGYSYSA	ANKNRAVIWE	EKTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKE	ATA
Tomato	GNPKAGEKIP	KTKCAQCHTV	EKGAGHKEGP	NLNGLFGRQS	GTTAGYSYSA	ANKNMAVNWG	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQE	RADLIAYLKE	ATA
Arabidopsis	GDAKKGANLF	KTRCAQCHTI.	KAGEGNKIGP	ELHGLFGRKT	GSVAGYSYTD	ANKQKGIEWK	DOTLFEYLEN	PKKYIPGTKM	AFGGLKKPKD	RNDLITFLEE	ETK
Mung bean	GNSKSGEKIF	KTKCAQCHTV	DKGAGHKQGP	NLNGL1 GRQS	GTTAGYSYST	ANKNMAVIWE	EKTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKE	STA
Wheat	GNPDAGAKIP	KTECAQCHTV	DAGAGHKQGP	NLHGLFGRQS	GTTAGYSYSA	ANKNKAVEWE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKK	ATSS
Sunflower	GNPTTGEKIF	KTKCAQCHTV	EKGAGHKQGP	NLNGLFGRQS	GTTAGYSYSA	GNKNKAV1WE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQE	RADLIAYLKT	STA
Yeast	GSAKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHGIFGRHS	GQAEGYSYTD	ANIKKNVLWD	ENNISEYLTN	PKKYIPGTKM	AFGGLKKEKD	RNDLITYLKK	ACE
Debaryomyces	GSEKKGANLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVVGRTS	GQAQGES TD	ANKKKGVEWT	EQULSDYLEN	PKKYIPGTKM	APGGERKARD	RNDLITYLVK	ATK
Candida	GSEKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVFGRKS	GLAEGYSYTD	ANKEKGVEWT	BOTMSDYLEN	PKKYIPGTKM	AFGGLKKPKD	RNDLVTYLKK	ATS
Aspergillus	GDAK - GAKLF	QTRCAQCHTV	EAGOPHKYGP	NLHGLFGRKT	GQSEGYAYTD	ANKQAGVTWD	ENTLESYLEN	PKKFIPGTKM	AFGGLKKGKE	RNDLITYLKE	STA
Rhodomicrobium	GDPVKGEQNF	KQ-CKICHQV	GPTAKNGVOP	EQNDVFGQKA	GARPOPNY SD	AMKNSGLTWD	EATLOKYLEN	PKAVVPGTKM	VFVGLKNPQD	RADVIAYLKQ	LSGK
Nitrobacter	GDVEAGKAAF	NK - CKACHE I	GESAKNKVOP	ELDG DGRHS	GAVEGYAYSP	ANKASGITWT	EAEFKEYIKD	PKAKVPOTKM	VFAGIKKDSE	LONDWAYVSQ	FDKD
Agrobacterium	GDVAKGEAAF	KR-CSACHA1	GEGAKNKVOP	QUNGIIGRTA	GGDFDYNYSN	AMEKAGLVWT	PQELRDFLSA	PKKKIPONKM	ALAGISKPEE	LONLIAYLIF	SASSK
Rhodopila	GDPVEGKHLF	HTICLICHT-	DIKGRNKVOP	SLYGVVGRHS	GIEPOYNYSE	ANIKSGIVWT	POVLFKYIEH	POKIVPOTKM	GYPG - QPDQK	RADIIAYLET	LK

3.7 Conformation of Cytochrome c Oxidase

4. Proton Gradient

4. Proton Gradient

4. Proton Gradient

The Chemiosmotic Theory of Peter Mitchell Proposed in 1961

 H^{+}

 H^+

ATP

Mitochondrial ATPase

Bacteriorhodopsin in

synthetic vesicle

4.1 Structure of ATP Synthase

ATP synthase is composed of a proton-conducting unit and a catalytic unit

4.2 ATP Synthase Binding-Change Mechanism

ATP is synthesized on β subunit without independent of the proton-motive force.

4.2 ATP Synthase Binding-Change Mechanism

Proton flow through ATP synthase leads to the release of tightly bound ATP

4.3 Molecular Motors

 $-ATP + H_2O$

 \rightarrow ADP + P_i

β

α

The world's smallest molecular motor Rotational catalysis

Actin filament

Proton flow around the c Ring powers ATP synthesis.

C, γ and ε subunits constitute the **rotor**.

a, b2 and δ subunites constitute the stator

Proton flow around the c Ring powers ATP synthesis.

c, γ and ε subunits constitute the **rotor**.

a, b2 and δ subunites constitute the stator

Aspartic acid Subunit c Cytosolic half-channel Matrix half-channel Subunit a

 H^+

The combination of the a and c subunits provide a path through the membrane

5. Shuttles

The inner mitochondrial membrane is impermeable to most substances

Shuttles are required to move materials into and out of the mitochondrial matrix.

5.1 Electrons from Cytosolic NADH

The NADH produced in glycolysis is on the wrong side of the inner mitochondrial membrane.

 There are two ways to get these electrons into mitochondrial matrix where they can feed into the electron transport chain
Glycerol 3-phosphate shuttle
Malate/Aspartate shuttle

5.1 Electrons from Cytosolic NADH

Glycerol 3-phosphate shuttle

5.1 Electrons from Cytosolic NADH

Malate/Aspartate Shuttle

5.2 ATP-ADP Translocase

ATP-ADP translocase is an antiporter

63

6. Regulation

The regulation of cellular respiration is governed primarily by the need for ATP

6.1 ATP Yield

ATP yield for complete oxidation is approximately 30

SLE 18.4 ATP yield from the complete oxidation of glucose	
Reaction sequence	ATP yield per glucose molecule
Glycolysis: Conversion of glucose into pyruvate	
Phosphorylation of glucose	- 1
Phosphorylation of fructose 6-phosphate	- 1
Dephosphorylation of 2 molecules of 1 3-BPG	+ 2
Dephosphorylation of 2 molecules of phosphoenolpyruvate	+ 2
2 molecules of NADH are formed in the ovidation of	14
2 molecules of glyceraldehyde 3-phosphate	
Conversion of pyruvate into acetyl CoA	
(inside mitochondria)	
2 molecules of NADH are formed	
Citric acid cycle (inside mitochondria)	
2 molecules of guanosine triphosphate are formed from	
2 molecules of succinyl CoA	+ 2
6 molecules of NADH are formed in the oxidation of 2 molecules each of isocitrate, α-ketoglutarate, and malate	
2 molecules of FADH ₂ are formed in the oxidation of 2 molecules of succinate	
Oxidative phosphorylation (inside mitochondria)	
2 molecules of NADH formed in glycolysis; each yields 1.5 molecules of ATP (assuming transport of NADH by the glycerol 3-phosphate shuttle)	+ 3
2 molecules of NADH formed in the oxidative decarboxylation of pyruvate; each yields	
2.5 molecules of ATP	+ 5
2 molecules of FADH ₂ formed in the citric acid cycle; each yields 1.5 molecules of ATP	+ 3
6 molecules of NADH formed in the citric acid cycle; each yields 2.5 molecules of ATP	+ 15
NET YIELD PER MOLECULE OF GLUCOSE	+30

6.2 Rate of Oxidative Phosphorylation

The rate of oxidative phosphorylation is determined by the need for ATP.

6.3 Inhibition of Oxidative Phosphorylation

The electron transport chain can be blocked at several locations.

ATP synthesis stops because the proton gradient can no longer be estabished.

6.3 Uncoupling of Oxidative Phosphorylation

Electron transport can be uncoupled from ATP synthesis by allowing protons to move back into the matrix by alternative pathways.

NO₂

2,4-Dinitrophenol (DNP)

 O_2N

6.4 Regulated Uncoupling

Sometimes uncoupling is done intentionally as a means for generating heat.

6.7 Power Transmission by Protein Gradients

Proton motive force is used to power many cellular processes.

