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associated with deep gas or oil-bearing deposits
(23). 16S rRNA gene sequence comparisons re-
vealed that taxa enriched in our 50°C experi-
ments (Fig. 3) are most closely related to bacteria
from subsurface petroleum reservoirs or oil pro-
duction facilities (94 to 96% similarity; table S3).
Another source of thermophiles could be nearby
mid-ocean ridge spreading centers (fig. S1).
Large volumes of fluids circulating through ocean
crust (25) could transport cells away from warm
anoxic niches in this seafloor habitat (26) and
suspend them in abyssal currents. The closest
relatives to the Arctic thermophiles also include
an anaerobic thermophile isolated from deep, hot
crustal fluid (94% similarity; table S3) (27).

Petroleum-bearing sediments and fractured
ocean crust both host anaerobic heterotrophic
microbial communities (26, 28). Areas of dis-
charge connecting these habitats to the water col-
umn are widespread, and both processes expel
large volumes of fluid into the oceans (23, 25). A
combination of different point sources could ex-
plain the diversity and distribution of thermophilic
taxa in Arctic sediments (Fig. 3 and fig. S1).
Although our observations suggest that seabed
fluid flow governs the biogeography of thermo-
philic spore formers, these passive dispersal
mechanisms are unlikely to act only on these par-
ticular bacteria. Permeable conduits through sedi-
ments and ocean crust pass through several
microbial niches with changing local temperature

and geochemistry (22, 25, 26). Widespread seed-
ing of the oceans by geofluids from deep bio-
sphere habitats may therefore contribute broadly
to the high microbial diversity observed in the
marine environment.
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Three-Dimensional Structural View
of the Central Metabolic Network of
Thermotoga maritima
Ying Zhang,1* Ines Thiele,2*† Dana Weekes,3 Zhanwen Li,1 Lukasz Jaroszewski,3
Krzysztof Ginalski,4 Ashley M. Deacon,5 John Wooley,6 Scott A. Lesley,7 Ian A. Wilson,8
Bernhard Palsson,2 Andrei Osterman,9 Adam Godzik1,3,6‡

Metabolic pathways have traditionally been described in terms of biochemical reactions
and metabolites. With the use of structural genomics and systems biology, we generated a
three-dimensional reconstruction of the central metabolic network of the bacterium Thermotoga
maritima. The network encompassed 478 proteins, of which 120 were determined by experiment
and 358 were modeled. Structural analysis revealed that proteins forming the network are
dominated by a small number (only 182) of basic shapes (folds) performing diverse but mostly
related functions. Most of these folds are already present in the essential core (~30%) of the
network, and its expansion by nonessential proteins is achieved with relatively few additional folds.
Thus, integration of structural data with networks analysis generates insight into the function,
mechanism, and evolution of biological networks.

The advent of genome sequencing has en-
abled development of computational and
experimental tools to investigate complete

biological systems, but it has also highlighted the
difficulty in integrating complex information for
the hundreds to thousands of different molecules
that compose even the smallest biological net-
works. Such integration presents many chal-
lenges, especially when assembling data from

diverse fields, such as biochemistry and structural
biology, that use different operational languages
and conceptual frameworks. Biochemistry has
traditionally focused on individual reactions and
pathways, but recent advances in genomics have
led to more rapid growth in the reconstruction and
modeling of metabolic networks on a genome-
wide scale (1–3). Thus, biochemical reactions,
pathways, and networks can now be described in

the context of entire cells, thereby enabling more
realistic simulations of the behavior of metabolic
networks in a growing number of organisms
(4–7). Nevertheless, metabolism is still generally
defined in terms of the chemical names and
identity of substrates, products, and reactions. It
does not explicitly consider the three-dimensional
structures of its components, although such
knowledge is required for a comprehensive
understanding, not only of the individual reac-
tions, but more importantly, of metabolic net-
works as a whole. Without such knowledge, we
cannot rigorously define enzyme mechanisms or
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predict the effects of mutations or drugs; on the
global level, we cannot understand the evolution-
ary relationships between different pathways,
how new metabolic capabilities are acquired, and
how individual organisms adapt to their particular
ecological niches and respond to environmental
pressures.

Such an understanding can be provided
by structural biology, which has traditionally
focused on individual proteins outside of their
full, system-level, biological context. The emer-
gence of large-scale structure genomics projects,
such as the Protein Structure Initiative (8), has
provided an exciting new opportunity for struc-
tural biology to contribute on a scale similar to
that of genomics.

Thermotoga maritima, one of the first dis-
covered hyper-thermophilic bacteria (9), rep-
resents the deepest known lineage of eubacteria
(9, 10), has one of the smallest genomes for a
free-living organism (11), and has been the sub-

ject of extensive experimental analysis (12, 13),
making it an ideal model organism for systems
biology and for integration of biochemical and
structural approaches (14).

We constructed a metabolic model of T.
maritima by a bottom-up approach, which first
identified all known biochemical reactions and
substrates from almost 150 publications (table S3),
providing direct biochemical, genomic, and phys-
iological evidence for more than 50% of the
metabolic reactions.We then identified the remain-
ing reactions from high confidence, homology-
based annotation databases (15, 16) and from
experimental or modeled protein structures (see
below). We used flux balance analysis (17) to test
the completeness of the network, revealing gaps,
such as missing enzymes or redundant func-
tional assignments, which were then resolved by
manual curation for individual cases. We con-
tinued iterative evaluation of the network until
its performance reproduced, in silico, the ex-

perimentally determined metabolic capabilities
of T. maritima (tables S9 and S10) (18).

Our resulting metabolic reconstruction in-
cluded 478 metabolic genes, 503 unique metab-
olites, and 562 intracellular and 83 extracellular
metabolic reactions (18), and it reproduced
T. maritima’s ability to grow on diverse carbohy-
drates (table S9) and to produce knownmetabolic
by-products; e.g., acetate and hydrogen. The over-
all scope, content, and quality of this metabolic
reconstruction were comparable with state-of-
the-art reconstructions for other model organisms
(table S6). Although the current model does
not yet provide an exhaustive description of
T. maritima metabolism, it represents a major
step in an iterative process of annotation and
modeling of this organism.

The T. maritima metabolic reconstruction
(mr) defines a specific set of proteins (mrTM)
that carry out the biochemical functions that
make up a self-sustaining, metabolic network. Of

TM1400 TM1401 TM1585

3pyser 2pgdgy

hydroxypyruvate 
reductase

glycerate-2-kinase
serine-pyruvate 
aminotransferase

    COOH
     |
  HC-NH2
     |
H2C-OH

   COOH
    |
 HC = O
    |
H2C-OH

    COOH
     |
  HC-O-P
     |
H2C-OH

    COOH
     |
  HC - OH
     |
H2C-OH

SAT
(TM1400)

GK-II
(TM1585)

HPR
(TM1401)

Pyr L-Ala ATP ADPNADH NAD+

ser 2pgdgy3py

Metabolic Reconstruction Structural Genomics

Genome

Pathway III
Pathway II

Pathway I

Fig. 1. Combining metabolic reconstruction and structural genomics
approaches for an integrated annotation of the T. maritima central
metabolic network. Underlying genomics information (Bottom) enabled
both a metabolic reconstruction (Left) and an atomic-level structure

determination/modeling of T. maritima proteins (Right). Integration of
these two approaches enabled detailed information to be acquired for
every reaction in the network (Top); an example from the T. maritima
serine degradation pathway is illustrated (32).
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478 proteins in this mrTM set, structures of 120
proteins have been determined experimentally
(12), and 358 were predicted and modeled with a
variety of computational approaches (18). The
quality of the modeled structures spans the spec-
trum from those comparable to low-resolution,
experimental structures (190 were built on tem-
plates with more than 30% identity to the targets)
to very approximate (52 were based only on fold
predictions). For three (TM1444, TM0788, and
TM0540), the automated structure prediction
approach failed, and approximate structures were
modeled by combining several different fold
prediction algorithms with manual refinement
(18). Quality control, as based on public bench-
marks in modeling and fold recognition, suggests

high confidence that all models are correct at the
fold-assignment level (18). Thus, these combined
approaches allowed us to achieve complete
structural coverage for the mrTM set (Fig. 1).

The information from structural determina-
tion of T. maritima proteins and their homologs
provided additional support for functional as-
signment of 181 individual genes. A total of 41
experimental structures of T. maritima proteins
contained relevant metabolites, and 140 crystal
structures (used as templates for homology mod-
eling) were also determined as complexes with
ligands, all of which support the functional as-
signment in the reconstruction. In at least two
cases, TM0449 (19–22) and TM1643 (23), struc-
tural analysis was critical for identification of

enzymatic function and, in many other cases, sub-
stantially contributed to assignment of function.

Metabolic reconstruction not only can be
described in a matrix format that can directly be
used for metabolic simulations to predict essential
genes or growth rates, it can also be represented
as a graph. Because the reconstruction represents
a fully functional, cell-level model of a metabolic
network, analysis of the topology of this graph
allows us to answer many interesting questions,
especially when combined with knowledge of
structures or models for all proteins in the net-
work. For instance, what is the dominant mech-
anism for expansion of a metabolic network in a
single organism? In the “patchwork” hypothesis
(24), network expansion is driven by recruitment

Gene Fold

ArgB Carbamate kinase-like

ArgC NAD(P)-binding Rossmann-fold 
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Fig. 2. Classification of metabolic reactions. (A) Examples of similar (S),
connected (C), and unrelated (U) reactions from the arginine and lysine
biosynthesis pathways. ArgB and LysC share a co-substrate [adenosine
triphosphate (ATP)] that undergoes the same transformation [to adenosine
diphosphate (ADP) + Pi]. Similarly, ArgC and Asd transform the reduced form
of NADP+ (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP+).
By these criteria, both pairs are classified as similar. At the same time, reaction

pairs ArgB/ArgC and LysC/Asd are adjacent in the pathway, because the product
of the first reaction is the substrate for the next. These reaction pairs are
classified as connected. All other pairs of reactions (ArgB/Asd and ArgC/LysC)
are classified as unrelated. In this example, only the enzymes classified as
similar (ArgB/LysC and ArgC/Asd) have the same fold. (B) Detailed information
on the enzymes in (A). (C) Bars representing the relative number of pairs with
the same fold in each category of reactions.
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of proteins that perform similar reactions but are
present in distinct pathways. Conversely, in the
“retrograde” hypothesis (25), proteins evolve, after
duplication, to perform dissimilar reactions with-
in the same pathway or neighboring part of the
network. Analysis of fold conservation as a func-
tion of network topology, therefore, addresses this
key issue. Similar analyses have been performed
previously on a small set of known pathways
(26, 27), but our integrated approach allowed us
to analyze the complete set of pathways that form
the fully functional, self-sustained metabolic net-
work of a single organism.

We then established an automated protocol
to classify metabolic reactions into three catego-
ries: (i) similar, (ii) connected, and (iii) unrelated
(Fig. 2 and fig. S6). Enzymes that catalyze simi-
lar types of reactions have a sixfold higher prob-
ability of having the same fold than enzymes
catalyzing connected reactions (Fig. 2C), sup-
porting the patchwork hypothesis (24). However,
it should be noted that proteins catalyzing con-
nected reactions still have a higher chance of hav-
ing the same fold as those catalyzing unrelated
reactions, suggesting a role for gene duplication
within pathways during pathway evolution (i.e.,
the retrograde model). More importantly, the
patchwork hypothesis can account for only 11%
of the observed structural similarity between
mrTM proteins of similar function, indicating that
convergent evolution of similar reaction mecha-

nisms [i.e., nonhomologous gene displacement
(28), where two nonhomologous proteins perform
the same or similar metabolic function] is not a
rare event and substantially contributes to evolu-
tion of the central metabolic network.

Another interesting question is the distribution
and frequency of protein folds in this mrTM set.
The 478 proteins contain 714 domains, but only
182 distinct folds, which are significantly fewer
than would be expected (~300) for an equivalent
random set of proteins with known structures (fig.
S8). The surprisingly small number of folds arises
from the fact that the most popular folds [e.g., the
P-loop, triosephosphate isomerase (TIM) barrel,
and Rossmann folds] are overrepresented as com-
pared with their frequency in the general protein
population (Fig. 3). Some relatively rare folds,
abundant in the mrTM set, such as the biotin
synthetase and the thiamin diphosphate binding
folds, include groups of enzymes that perform
specific but essential functions, such as tRNA
aminoacylation or carbon metabolism.

Themost obvious interpretation of this skewed
fold distribution is that the mrTM set, which
covers the most fundamental protein functions,
consists of the most ancient and, thus, the most
abundant protein families. To probe this inter-
pretation further, we analyzed the fold distribu-
tion for the core of the T. maritima metabolic
network, as represented by the set of essential
proteins. We identified essential proteins by a

reductive evolution simulation approach (18, 29),
where iterative simulations are performed to
identify a minimal network by randomly elimi-
nating genes from the model until additional
elimination would result in a nonviable network.
Each simulation led to a different minimal net-
work, of size anywhere between 200 and 300
genes (i.e., corresponding to 42 to 63% of the
mrTM set). Statistical analysis of 1000 such
minimal networks in independent simulations in
glucose minimal medium (18) allowed the clas-
sification of genes from the mrTM set into three
categories: (I) core- or unconditional-essential
genes that are always present, (II) nonessential
genes that never appear, and (III) “synthetic
lethal” or “conditional-essential” genes (30) that
appear only in some simulations, but not in
others, depending on which other genes are re-
moved or retained in a particular network mini-
mization. For example, if two genes have the
same essential function, the deletion of either
gene would not be lethal, but at least one gene
has to be present in the minimal network. The
frequency of such genes in multiple simulations
reflects the topology of the network and the rela-
tive redundancy of gene functions in the network.
It is important to emphasize that the core-
essential genes would not be sufficient to main-
tain a viable metabolic network, as all of the
many possible minimal networks contain con-
stant (core-essential genes) and variable (subset
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of conditionally essential genes) components.
The mrTM set consists of 177 core-essential, 203
nonessential, and 98 conditional-essential genes.
Proteins in these three sets have very different
fold distributions (Fig. 4). The number of folds in
the core-essential group is surprisingly large for
its sample size (111 folds for 177 proteins) as
compared with the nonessential group, which
contains more proteins but a smaller number of
folds (92 folds for 203 proteins). This trend is
inverse to that observed when mrTM is com-
pared with nonredundant sequences in the Na-
tional Center for Biotechnology Information
(NCBI) database (31) (fig. S8), where the mrTM
set was more abundant in popular folds. These
analyses suggest that core-essential proteins per-
form unique chemical functions that are strongly
associated with specific folds and are so funda-
mental that their deletion would result in a
nonviable network.

We have presented here the integration of
a metabolic and structural view of the central

metabolic network of the thermophilic bacterium
T. maritima. Achieving a complete description
on these two levels is an important milestone that
now enables large-scale analyses, such as the
network-scale comparison of correlations be-
tween fold conservation and biochemical func-
tion. From our study, not only can we provide a
quantitative estimate of the dominance of the
patchworkmodel (24) versus the retrogrademod-
el (25) of metabolic evolution, but we can also
illustrate the importance of convergent or parallel
evolution in proteins carrying out similar bio-
chemical functions. Furthermore, we show that
the set of proteins responsible for the central
metabolism in T. maritima is highly nonrandom
and dominated by a small number of folds that
significantly exceed their already dominant
distribution in the protein universe, suggesting
that the central metabolism network has evolved
mainly from a set of the most ancient proteins
that have had sufficient time to develop divergent
functionalities and, hence, expand into the very

large and very diverse protein families that we
observe today. At the same time, the subset of
core-essential proteins reverses this trend and is
relatively more diverse than an equivalent subset
of nonessential proteins. This counterintuitive
situation is attributable to the presence of some
specific folds with functions that are so unique
that it is impossible to replace them with other
existing folds.
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Details of Insect Wing Design and
Deformation Enhance Aerodynamic
Function and Flight Efficiency
John Young,1 Simon M. Walker,2 Richard J. Bomphrey,2 Graham K. Taylor,2 Adrian L. R. Thomas2*

Insect wings are complex structures that deform dramatically in flight. We analyzed the
aerodynamic consequences of wing deformation in locusts using a three-dimensional
computational fluid dynamics simulation based on detailed wing kinematics. We validated the
simulation against smoke visualizations and digital particle image velocimetry on real locusts.
We then used the validated model to explore the effects of wing topography and deformation,
first by removing camber while keeping the same time-varying twist distribution, and second by
removing camber and spanwise twist. The full-fidelity model achieved greater power economy
than the uncambered model, which performed better than the untwisted model, showing that
the details of insect wing topography and deformation are important aerodynamically. Such
details are likely to be important in engineering applications of flapping flight.

Insects achieve remarkable flight perform-
ance with a diverse range of complex wing
designs (1, 2). Computational fluid dynam-

ics (CFD) offers an opportunity to identify the
features underpinning the aerodynamic perform-
ance of insect wings. By comparing numerical
simulations of different designs, it is possible to
test the effects of modifications that may be
outside the natural range of variation. Unfortu-
nately, a lack of detailed measurements of insect
wing kinematics has limited previous numerical
studies of insect flight to two-dimensional (2D)
models (3–6) or to 3D models in which the
wings are modeled as rigid flat plates (7–11) or
as rigid sections with constant camber and twist
(12). Such simplifications can dramatically
change the conclusions drawn about flow struc-

ture (13), and no model has yet been validated
experimentally against flow visualizations from a
real insect.We used themost detailed set of insect
wing kinematics published to date (2) to develop
the first 3D CFD model of an insect with de-
forming wings. We validated the results of our
CFD simulations against qualitative and quanti-
tative flow visualizations of real locusts. We then
used progressive simplifications of the wing
kinematics to analyze the aerodynamic conse-
quences of the measured twist and camber.

We modeled a typical wingbeat of the desert
locust Schistocerca gregaria (14) by averaging
the kinematics of four consecutive wingbeats
from one of the individuals described in (2).
These kinematics were obtained by using four
high-speed digital video cameras to track more
than 100 natural features and marked points on
the wings, which were then used to reconstruct
the deforming surface topography of the wings
with a mean spatial error of 0.11 mm (15). We
fitted cubic splines to the wing outline and veins,
and we interpolated these spatially to give the
surface mesh for the CFD simulations, which we

then interpolated temporally to give up to 800 time
steps per wingbeat (14). We gave the modeled
wings a nominal constant thickness of 0.05 mm
based on published cross-sections of the wing
veins and membrane (16). We did not attempt to
model variations in thickness due to wing vena-
tion. Folding of the hindwing against the thorax
could not be modeled exactly, and we instead
modeled the hindwing as if it were joined to the
thorax along its chord (14).

We solved the unsteady incompressible
Navier-Stokes equations assuming laminar flow
using a commercial CFD package (14). We con-
structed the CFD grid for the locust kinematics
in multiple parts by using commercial software,
and we incorporated the wing motions via a
look-up table prescribing the kinematics (14).
The wings and body were meshed with a tri-
angular surface grid and surrounded with a thin
boundary-layer grid to provide adequate resolu-
tion of velocity gradients normal to the surface.
These were then surrounded with stationary
outer regions representing the wind tunnel, and
a deforming inner region in which the wings and
boundary layer grids moved. A symmetry plane
running through the sagittal plane of the insect
was used. Aerodynamic forces on the wings and
body were calculated by integrating pressure and
viscous shear stress over the surfaces. Starting
transients in the calculated aerodynamic forces
vanished rapidly within the first wingbeat, with
very close agreement between wingbeats there-
after, so we allowed the simulation to run for
four repeated wingbeats. Aerodynamic power
requirements were calculated by integrating the
inner product of the local pressure and viscous
forces with the local wing surface velocity in a
coordinate system fixed to the insect’s body.

We validated our CFD method against an
independent CFD algorithm (17) by using our
method to replicate published force computations
for a simple model of a flapping dragonfly wing
in hover (11, 14). The predicted instantaneous
vertical force coefficients from the two algo-
rithms were in excellent agreement, with a linear
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