Lecture 12 - Epilogue	
Metabolism: Basic Concepts and Design	
Preview for Chem 454	
Introduction	
2	
Introduction	
Questions you will focus on in Chem 454:	
1	
Introduction	
Questions you will focus on in Chem 454:	
▶ How does a cell extract energy and reducing power from its environment (catabolism)?	
poner from the cirri offinetic (catabolism).	
2	

Introduction Questions you will focus on in Chem 454:	
How does a cell extract energy and reducing power from its environment (catabolism)?	
▶How does a cell synthesize the molecules it	
needs (anabolism)?	
2	
Introduction	
Questions you will focus on in Chem 454:	
How does a cell extract energy and reducing power from its environment (catabolism)?	
► How does a cell synthesize the molecules it needs (anabolism)?	
How are these processes integrated and regulated?	
· ·	
2	
	7
Introduction	
Living organisms require an input of free energy to meet a variety of needs:	
This free energy is required for	
Mechanical work (Lecture 11)	
 Active transport of molecules and ions (Lecture 9) 	
• Synthesis of biomolecules (Chapters 24-26)	
3	
	<u> </u>
	7
Introduction	
The source of this free energy varies	
▶ Phototrophs	
Use energy from the sun to convert energy-poor molecules into energy rich molecules (Chapters 19 & 20)	
▶ Chemotrophs	
Obtain energy by oxidizing the energy-rich molecules made by the phototrophs (Chapters 15-18)	

Introduction

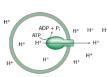
- Reduced molecules are energy-rich
- Oxidized molecules are energy-poor

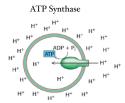
most energy —				least energy
H H H Methane	H H Methanol	H C H Formaldehyde	H C OH Formic acid	Carbon dioxide
$\frac{\Delta G^{\circ}_{\text{oxidation}}}{(\text{kcal mol}^{-1})}$ -196	-168	-125	-68	0
$\Delta G^{\circ}_{\text{oxidation}}$ -820	-703	-523	-285	0

Introduction

We have also seen how free energy can be stored as an unequal distribution of ions across a biological membrane.

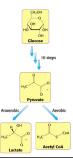
The free energy that is stored in an ion gradient can be used to

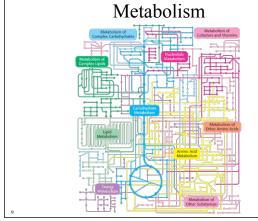

- Make ATP by a process called oxidative phosphorylation (Lecture 11 & Chapter 18)
- Transport ions and metabolites across membranes (Active transport (Lecture 9)
- Nerve transmission (The action potential) (Lecture 9)


Introductions

Ion gradients:

- Ion gradients an be produced by pumps that use ATP hydrolysis as a source of free energy (Lecture 9)
- $\bullet \;\;$ lon gradients can be use, in turn, to synthesize ATP from ADP and Pi.


Active Transport



Metabolism

Metabolism is composed of many coupled, interconnected reactions

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

▶Anabolic pathways

Those that require an input of energy

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

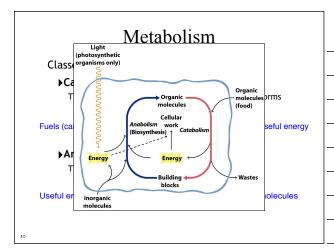
Fuels (carbohydrates, fats) \longrightarrow CO₂ + H₂O + useful energy

▶Anabolic pathways

Those that require an input of energy

Metabolism

Classes of metabolic pathways:


▶Catabolic pathways

Those that convert energy into biologically useful forms

Fuels (carbohydrates, fats) \longrightarrow CO₂ + H₂O + useful energy

▶Anabolic pathways

Those that require an input of energy

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

Fuels (carbohydrates, fats) \longrightarrow CO₂ + H₂O + useful energy

▶Anabolic pathways

Those that require an input of energy

Useful energy + small molecules ── complex molecules

Metabolism

Basic concepts of metabolism include:

- Thermodynamically unfavorable reactions can be driven by favorable reactions.
- •ATP (NTP) is the universal currency of free energy.
- \bullet Reduced nucleotides (NADH and FADH2) are another source.
- ATP hydrolysis drives metabolism by shifting the equilibrium constant of coupled reactions.
- The phosphoryl transfer potential is an important form of cellular energy transformation.

Thermodynamics

Thermodynamically unfavorable reactions can be driven by favorable reactions.

Free energy change for a reactions:

$$A+B\to C+D$$

$$\Delta G = \Delta G^{0'} + RT \ln \left(\frac{[C][D]}{[A][B]} \right)$$

Thermodyamics

Coupling unfavorable reactions with favorable ones

• Let's say we wish to make C from A:

$$A \leftarrow B + C$$

$$\Delta G^{o'} = +5 \ kcal \ mol^{-1}$$

$$B \rightarrow D$$

$$\Delta G^{^{o'}} = -8 \; kcal \; mol^{-1}$$

$$A \rightarrow C + D$$

$$\Delta G^{o'} = -3 \ kcal \ mol^{-1}$$

ATP

ATP is the universal currency of free energy

ATP

Hydrolysis of ATP:

ATP +
$$H_2O$$
 \longrightarrow ADP + P_i $\Delta G^{o}{}^{\circ} = -7.3 \ kcal \ mol^{-1}$

ATP +
$$H_2O$$
 \longrightarrow AMP + PP_i $\Delta G^{o} = -10.9 \ kcal \ mol^{-1}$

ATP Hydrolysis

• ATP hydrolysis drives metabolism by shifting the equilibrium of coupled reactions

ATP Hydrolysis

Phosphoryl transfer is a common means of energy coupling

- ▶ Molecular motors (Lecture 11)
- ▶ Muscle contraction (Lecture 5 & 11)
- ▶ Ion pumps (Lecture 9)

Phosphoryl Transfer

Structural basis for high transfer potential Compare:

ATP +
$$H_2O$$
 \longrightarrow ADP + P_i $\Delta G^{o}=-7.3~kcal~mol~^{-1}$ Glycerol 3-phosphate + H_2O \longrightarrow Glycerol + P_i $\Delta G^{o}=-2.2~kcal~mol~^{-1}$

Phosphoryl Transfer

Phosphate ester vs Phosphate anhydride

Phosphoryl Transfer and Energy Transfer

There are other molecules with favorable phosphoryl transferase energies

Phosphoryl Transfer

In terms of energy for phosphoryl transfer, ATP is intermediate:

TABLE 14.1 Standard free energies of hydrolysis of some phosphorylated

Compound	kcal mol ^{−1}	kJ mol ⁻¹
Phosphoenolpyruvate	-14.8	-61.9
1,3-Bisphosphoglycerate	-11.8	-49.4
Creatine phosphate	-10.3	-43.1
ATP (to ADP)	- 7.3	-30.5
Glucose 1-phosphate	- 5.0	-20.9
Pyrophosphate	- 4.6	-19.3
Glucose 6-phosphate	- 3.3	-13.8
Glycerol 3-phosphate	- 2.2	- 9.2

Cellular Energy

The oxidation of Carbon fuels is an important source of cellular energy

mo	st energy –				── least energy
	H H H Methane	H H H Methanol	H H Formaldehyde	H OH Formic acid	Carbon dioxide
$\Delta G^{\circ}_{\text{oxidation}}$ (kcal mol ⁻¹)	-196	-168	-125	-68	o
$\Delta G^{\circ}_{\text{oxidation}}$ (kJ mol ⁻¹)	-820	-703	-523	-285	0

Cellular Energy

The oxidation of Carbon fuels is an important source of cellular energy

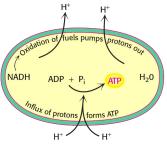
Cellular Energy

- The synthesis of high phosphoryl transfer potential compounds are used to couple carbon oxidation to ATP synthesis.
- Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP.
- The extraction of energy from foodstuffs occurs in stages.

Coupling oxidation to ATP synthesis

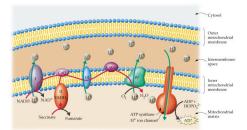
The synthesis of high phosphoryl transfer potential compounds are used to couple carbon oxidation to ATP synthesis.

▶Example from glycolysis:

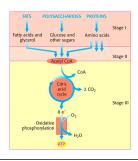

Coupling oxidation to ATP synthesis

In the next step ATP is harvested from the high energy phosphate intermediate.

 This is an example of substrate-level phosphorylation of ADP.


Ion Gradients

 Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP.


Cellular Energy

 Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP. (Chapter 18)

Cellular Energy

Extraction of energy from foodstuffs is carried out in stages:

Recurring Motifs in Metabolism

- Activated carriers exemplify the modular design and economy of metabolism.
- Key reactions are reiterated throughout metabolism.
- Metabolic processes are regulated in three principle way.

Activated Carriers

- ATP is an activated carrier of phosphate groups
- Other examples include:
 - ► Activated carriers of electrons in oxidation reactions (NADH, FADH₂, FMNH₂, et al.)
 - ► Activated carriers of electrons in reductive biosynthesis (NADPH, FADH₂, FMNH₂, et al.)
 - ► Activated carriers of two-carbon fragments (Acetyl-CoA)

Activated carriers of electrons in catabolism

NAD⁺
(Nicotinamide
Adenine
Dinucleotide)

Activated carriers of electrons in catabolism FAD (Flavin Adenine Dinucleotide)

Activated carriers of electrons in catabolism

Reduction of isoalloxazine ring of FAD

Activated carriers of electrons in biosynthesis

NADPH (Nicotinamide Adenine Dinucleotide Phosphate)

Activated carriers of acyl groups

Coenzyme A is a carrier of Acyl groups

Activated Carriers

Other common activated carriers:

ABLE 14.2 Some activated carriers in metabolism				
Carrier molecule in activated form	Group carried	Vitamin precursor		
ATP	Phosphoryl			
NADH and NADPH	Electrons	Nicotinate (niacin)		
FADH ₂	Electrons	Riboflavin (vitamin B ₂)		
FMNH ₂	Electrons	Riboflavin (vitamin B ₂)		
Coenzyme A	Acyl	Pantothenate		
Lipoamide	Acyl			
Thiamine pyrophosphate	Aldehyde	Thiamine (vitamin B ₁)		
Biotin	CO_2	Biotin		
Tetrahydrofolate	One-carbon units	Folate		
S-Adenosylmethionine	Methyl			
Uridine diphosphate glucose	Glucose			
Cytidine diphosphate diacylglycerol	Phosphatidate			
Nucleoside triphosphates	Nucleotides			

Note: Many of the activated carriers are coenzymes that are derived from water-soluble vitamins (Section 8.6.1).

Key Reactions

• There are six basic reactions in metabolism:

Α	ABLE 14.3 Types of chemical reactions in metabolism			
I	Type of reaction	Description		
Γ	Oxidation-reduction	Electron transfer		
	Ligation requiring ATP cleavage	Formation of covalent bonds (i.e., carbon–carbon bonds)		
ı	Isomerization	Rearrangement of atoms to form isomers		
	Group transfer	Transfer of a functional group from one molecule to another		
ı	Hydrolytic	Cleavage of bonds by the addition of water		
	Addition or removal of functional groups	Addition of functional groups to double bonds or their removal to form double bonds		

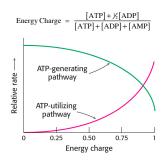
Key Reactions

Metabolic motifs

Metabolic Regulation

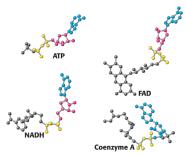
Metabolic processes are regulated in different ways:

- •Enzyme levels
- •Enzyme activity (Lecture 6)
- Accessibility of substrates to the enzyme (Compartmentalization)


Metabolic Regulation

Degradative and biosynthesis pathways are usually distinct

- Compartmentalization
- Allosteric regulation


Metabolic Regulation

• The energy charge

Evolution of Metabolic Pathways

The structures of ATP, CoEnzyme A NADH and FADH₂ belie their "RNA world" origin.

Next up

Final Exam - Wednesday, 19. Dec., 2012 at 8:00am in Phillips 281.