Introduction	
 Membrane proteins function as 	
• Pumps (Chapter 13)	
• Channels (Chapter 13)	
• Signal transducers (Chapter 14)	
• Energy transducers (Chapter 18 & 19)	
Chem 452, Lecture 9 - Pumps and Channels 2	

Introduction
+ Membrane proteins function as
• Pumps (Chapter 13)
• Channels (Chapter 13)
• Signal transducers (Chapter 14)
• Energy transducers (Chapter 18 & 19)
Chem 452, Lecture 9 – Pumps and Channels 3

Introduction	
 Pumps and Channels move substances across membranes. 	
 Pumps move substances from regions of low concentration to high concentration. 	
 Requires a source of energy (active transport) 	
 Channels allow substances to move from regions of high concentration to low concentration. 	
 Does not require an outside source of energy (passive transport) 	
 If passive transport requires a channel it is 	
called facilitated diffusion.	
Chem 452, Lecture 9 - Pumps and Channels 5	

Introduction	
 Some pumps couple transport to the hydrolysis of ATP (primary transport) 	
P_Type ATPases	
ATD hinding assetta (ARC) transportant	
Alf-binding casselle (Abc) maisporters	
+ And some pumps couple transport to a second	
concentration gradient (secondary transport)	
Chem 452, Lecture 9 - Pumps and Channels 6	

Introduction

Transporters are used to regulate the metabolic in different tissues across an organism.
e.g. Glucose Transporters

Name	Tissue location	К _М	Comments
GLUT1	All mammalian tissues	1 mM	Basal glucose uptake
GLUT2	Liver and pancreatic $\boldsymbol{\beta}$ cells	15–20 mM	In the pancreas, plays a role in the regulation of insulin In the liver, removes excess glucose from the blood
GLUT3	All mammalian tissues	1 mM	Basal glucose uptake
GLUT4 brane	Muscle and fat cells	5 mM	Amount in muscle plasma mem-
			increases with endurance training
GLUT5	Small intestine	-	Primarily a fructose transporter
GLUT5	Small intestine	—	Primarily a fructose transporter

Introduction

+ Transporters are used to regulate the metabo in different tissues across an oraanism. • e.g. Glucose Transporters BLE 16.4 Family of glucose transporters TABLE 16.4 Family of glucose transporters Name Tissue location ĸ Comments Basal glucose uptake In the pancreas, plays a role i the regulation of insulin In the liver, removes excess g from the blood Basal glucose uptake Amount in muscle plasma m All mammalian tissues 1 mM Liver and pancreatic β cells 15–20 mM GLUT1 GLUT2 GLUT3 GLUT4 brane All mammalian tissues Muscle and fat cells 1 mM 5 mM increases with endurance tra Primarily a fructose transpo GLUT5 Small intestine _ Chem 452, Lecture 9 - Pumps and Ch

olic	
1	
e	
in	
lucose	
em-	
ining rter	
anneis 7	

sporters are use fferent tissues o . Glucose Transpor Family of glucose transpo Tissue location	ed to reg across an ters prters <u>Km</u>	gulate the metabolic n orcanism. Which tissue is last in line to take up glucose from the blood? Comments
Family of glucose transpo Tissue location	K _M	Comments
Tissue location	Км	Comments
Liver and pancreatic β cells	1 mM 15–20 mM	Basal glucose uptake In the pancreas, plays a role in the regulation of insulin
		In the liver, removes excess glucose from the blood
Muscle and fat cells	5 mM	Amount in muscle plasma mem-
Small intestine	_	increases with endurance training Primarily a fructose transporter
All Mu Sma	mammalian tissues scle and fat cells all intestine	mammalian tissues 1 mM scle and fat cells 5 mM all intestine —

Introduction

Transporters are used to regulate the metabolic in different tissues across an organism.
e.g. Glucose Transporters

TABLE 16.4 Family of glucose transporters

Name	Tissue location	К _М	Comments
GLUT1	All mammalian tissues	1 mM	Basal glucose uptake
GLUT2	Liver and pancreatic $\boldsymbol{\beta}$ cells	15–20 mM	In the pancreas, plays a role in the regulation of insulin In the liver, removes excess glucos from the blood
GLUT3	All mammalian tissues	1 mM	Basal glucose uptake
GLUT4 brane	Muscle and fat cells	5 mM	Amount in muscle plasma mem-
			increases with endurance training
GLUT5	Small intestine	_	Primarily a fructose transporter

Chem 452, Lecture 9 - Pumps and Channels 7

Active versus Passive Transport	
 Transport across membranes 	
 Simple Diffusion (passive transport) ^{kr} ^{tryptophan} ^{tryptophan}	
 Requires energy (active transport) 	
+ For all kinds of transport, the $\Delta {f G}$ for the	
process must be < 0.	
Chem 452, Lecture 9 - Pumps and Channels 9	

Active versus Passive Transport

- The free energy change for moving a species across a membrane depends on
- The concentration differences for that species
- Voltage differences across the membrane, if the species carries a charge

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Chem 452, Lecture 9 - Pumps and Channels 10

Active versus Passive Transport

- The free energy change for moving a species across a membrane depends on
- The concentration differences for that species
- Voltage differences across the membrane, if the species carries a charge

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Concentration

Chem 452, Lecture 9 - Pumps and Channels 10

Active versus Passive Transport • The free energy change for moving a species across a membrane depends on • The concentration differences for that species • Voltage differences across the membrane, if the species carries a charge $\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$ Concentration

Active versus Passive Transport

- The free energy change for moving a species across a membrane depends on
- The concentration differences for that species
- Voltage differences across the membrane, if the species carries a charge

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Concentration Voltage

Chem 452, Lecture 9 - Pumps and Channels 10

Active versus Passive Transport

- The free energy change for moving a species across a membrane depends on
- $\boldsymbol{\cdot}$ The concentration differences for that species
- Voltage differences across the membrane, if the species carries a charge

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Concentration Voltage

Chem 452, Lecture 9 - Pumps and Channels 10

ATPase Pumps (Active Transport)

- + P-type ATPases
- + ATP-Binding Cassette Transporters Table 15.1 Standard free energies of hydrolysis of some phosphorylated

Compound	kJ mol⁻¹	kcal mol ⁻¹
Phosphoenolpyruvate	-61.9	-14.8
1,3-Bisphosphoglycerate	-49.4	-11.8
Creatine phosphate	-43.1	-10.3
ATP (to ADP)	-30.5	- 7.3
Glucose 1-phosphate	-20.9	- 5.0
Pyrophosphate	-19.3	- 4.6
Glucose 6-phosphate	-13.8	- 3.3
Glycerol 3-phosphate	- 9.2	- 2.2

ATPase Pumps
All use I allips
+ P-type ATPases
• Na⁺/K⁺ ATPase
Pumps 3 Na⁺ out while pumping 2 K⁺ in.
 Gastric H⁺/K⁺ ATPase
 Sarcoplasmic Ca²⁺ATPase (SERCA)
Chem 452, Lecture 9 - Pumps and Channels 12

ATPase Pumps

+ The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na⁺/K⁺ ATPase.

ATPase Pumps

Digitoxigenin

- + The P-type pumps are homologous.
- + The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na⁺/K⁺ ATPase.

ATPase Pumps	
 The P-type pumps are homologous. 	
 The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na*/K* ATPase. 	
 With higher cellular Na⁺ levels, the Ca²⁺ pump 	
is slower to remove the Ca^{2+} from the	
cytoplasm, leading to a stronger contraction.	
Chem 452, Lecture 9 – Pumps and Channels 21	

ATPase Pumps	
 The P-type pumps are homologous. Yeast contain 16 examples H⁺ Ca²⁺ 	
 Na* Cu²⁺ phospholipid (flipases) 	
Chem 452, Lecture 9 - Pumps and Channels 22	

Next up	
 Unit V, Lecture 9, con'd – Membrane Channels and Pumps. (Chapter 13) K⁺ channel and the action potential 	
Chem 452, Lecture 9 - Pumps and Channels 29	