Chem 452 - Lecture 11 Molecular Motors	
Part 2	
Question of the Day. How is the movement of bacteria like a bumper car ride?	

+ Bacterial flagella are remarkably similar to an electrical motor.

Bacterial Flagella	
 Bacterial flagella are made from the 56 kd flagellin protein. 	
+ Flagella grow from their distal ends	
 Unlike G-actin and tubulin, flagellin is not an NTPase. 	
Chem 452, Lecture 11 - Molecular Motors 5	

Bacterial Flagella	
 The MotA and MotB proteins are paired. Approximately 11 copies assemble together to make up the stator at the base of the flagellum. 	
Flagellum Filament Hook Peptidogiycan Cytoplasm Fils MotA Fils	
Chem 452, Lecture 11 - Molecular Motors 6	

- + The FliG, FliM and FliN assemble to form the MS (membrane and supramembane) ring.
 - Approximately 30 copies of FliG form the rotor that is located in the cytoplasmic membraine.

Chem 452, Lecture 11 - Molecular Motors 7

Bacterial Flagella

- The MotA/MotB stator and the FliG rotor work together to couple proton flow across the membrane to rotation of the flagellum.
- The mechanism is believed to be similar to that used by ATP Synthase, which couples proton flow across the membrane to the synthesis of ATP

Chem 452, Lecture 11 - Molecular Motors 8

ATP Synthase

- + ATP Synthase is used by bacteria, plants and animals to synthesize ATP.
- ATP Synthase (pp.545-550, Chapter 18)
- The free energy ultimately comes either from photosynthesis or from the oxidation of food molecules.
- This free energy is used to establish a proton gradient accross membranes.
 - · cell membrane in bacteria
- $\boldsymbol{\cdot}$ inner mitochondrial membrane in animals and plants
- thylakoid membrane in photosynthetic plants

Chem 452, Lecture 11 - Molecular Motors 9

ATP Synthase

 ATP Synthase couple the flow of H⁺ back down the concentration gradient to the synthesis of ATP.

FH⁺ back down e synthesis of	
Fo	
}F ₁	
J Lecture 11 - Molecular Motors 10	

ATP Synthase

The flow of H⁺ across the membrane occurs in the a subunits and involves 2 half-channels.
Subunit c shuttles the H⁺ from one half-channel to the other.

+ Bacterial flagella are believed to also have two half-channels.

Bacterial Flagella

+ Like secondary active transporters, they are driven not by the hydrolysis of ATP, but by ion gradients across the cell membrane.

Chem 452, Lecture 11 - Molecular Motors 15

Bacterial Flagella	1	
+ Bacteria move in a rand	lom walk.	
 Reversing the direction of flagellar rotation from counterclockwise to counter clockwise causes them to change direction. 	50 µm	

- * The random walk can be biased by **chemotaxis**.
- Bacteria to more likely to swim towards a chemoattractant.
- Such as a food source, like glucose
- + Bacteria are also more likely to swim away from a **chemorepellant**.
 - Such as a toxic chemical, like phenol

Chem 452, Lecture 11 - Molecular Motors 17

Bacterial Flagella

- + Chemotaxis is facilitated by the Che proteins.
- When the CheY protein is phosphorylated it associates with the flagellar motor, which promotes clockwise rotation (tumbling).
- When the CheY protein is dephosphorylated it dissociates from the flagellar motor, which promotes counterclockwise rotation (swimming).

Chem 452, Lecture 11 - Molecular Motors 18

Next up	
 The Epilogue - A preview to what is next. 	
 Final exam on Units (I through V) Wednesday, Dec 19 at 8:00am in Phillips 281 	
Chem 452, Lecture 11 - Molecular Motors 19	