Chem 452 - Lecture 11 Molecular Motors Part 1	
Question of the Day: How is the movement of vesicles around the cell like a stroll in the park?	

Introduction	
 Motion is of critical importance to biological systems, 	
For obtaining foodAnd avoiding danger	
+ Motion occurs at all levels	
 Whole organisms move about their environment There is also considerable motion within a living 	
cell.	
Chem 452, Lecture 11 - Molecular Motors 2	

Introduction
 Motion is of critical importance to biological systems.
 Motion occurs at all levels Whole organisms move Intracellular movement
Philly at night
Chem 452, Lecture 11 - Molecular Motors 3

Introduction	
 Free energy is required for this movement. 	
 Like membrane pumps, Motion can be directly coupled to the hydrolysis of ATP (NTP) 	
 Or it can be coupled to concentration gradients across membranes. 	
Chem 452, Lecture II – Molecular Motors 4	

Introduction	
 We will also look at the bacterial flagellum, which operates remarkably like a nanoscale electrical motor. 	
Flagellum	
Outer membrane	
Red MotB	
Flig (Chem 452, Lecture II – Molecular Motors 6	

- This movement is coupled to the direct hydrolysis of ATP.
- + Hydrolysis involves P-loop NTPases.
- Similar to G-proteins
- Similar to the Slime mold myosin II that we considered with catalytic strategies.
- + The P-loop NTP ATPases that move along tracks include,
- Heavy chain of myosin
- Kinesin
- Dynein

- This movement is coupled to the direct hydrolysis of ATP.
- + Hydrolysis involves P-loop NTPases.
 - Similar to G-proteins
- Similar to the Slime mold myosin II that we considered with catalytic strategies.
- + The P-loop NTP ATPases that move along tracks include,
- Heavy chain of myosin
- Kinesin
- Dynein

Movement Along Tracks	
 This movement is coupled to the direct hydrolysis of ATP. 	
 Hydrolysis involves P-loop NTPases. Similar to G-proteins Similar to the Slime mold myosin II that we considered with catalytic strategies. 	
 The P-loop NTP ATPases that move along tracks include, Heavy chain of myosin Kinesin Dynein 	
Chem 452, Lecture 11 - Molecular Motors 7	

Movement Along Tracks	
 The hydrolysis of ATP is coupled to the a conformational change, which results in 	
movement.	
Chem 452, Lecture 11 - Molecular Motors 8	

Movement Along Tracks	
 The hydrolysis of ATP is coupled to the a conformational change, which results in 	
movement.	
Chem 452, Lecture 11 - Molecular Motors 8	

Myosin ATPase

- An X-ray crystal structure of myosin II ATPase with a transition state analogue for ATP revealed a mechanism
- + VO₄³⁻ + ADP was substituted for ATP.

Movement Along Tracks	
 The hydrolysis of ATP is coupled to the a conformational change, which results in 	
movement.	
Chem 452, Lecture 11 - Molecular Motors 10	

Movement Along Tracks	
 The hydrolysis of ATP is coupled to the a conformational change, which results in 	
movement.	
Chem 452, Lecture 11 - Molecular Motors 10	

+ Dynein also moves along microtubules.

<u> </u>		

Movement Along Tracks Dynein also moves along microtubules. 	
Flagelum Electron micrographs of	
(a) outer dynein arm (b) 50 nm microbubule plasma membrane inner dynein arm	
outer doublet microtubule	
doubiet Goubiet Plasma membrane Basal body Constructiony identical to centricley	
Chem 452, Lecture 11 - Molecular Motors 12	

+ Dynein also moves along microtubules.

Actin

- + Actin is a 42 kd protein
 - \approx 10%, it is one of the most abundant proteins in eukaryotic cells.
- + Actin filaments help create the cytoskeleton and are continuously formed and degraded.

Chem 452, Lecture 11 - Molecular Motors 13

Actin

- Actin has a P-loop nucleotide binding site, which.
- ATP binding and hydrolysis influence the polymerization of actin monomers (G-actin) into actin filaments (F-actin).

eotide binding site,	
vsis influence the monomers (G-actin) into	
Chem 452, Lecture 11 - Molecular Motors 14	

Actin

- + Actin has a P-loop nucleotide binding site, which.
- + ATP binding and hydrolysis influence the polymerization of actin monomers (G-actin) into actin filaments (F-actin).

•ctin
K_d as a dissociation constant for elongation of F-actin \cdot $K_d \approx [A]$ is still valid.
 K_d defines the monomer concentration at which the polymerization process takes place. If [A] > K_d polymerization takes place
 If [A] < K_d depolymerization takes place K_d is referred to as the critical concentration.
$K_{d} = \frac{(M_{RI})(M_{I})}{[A_{R+1}]}$
A _n A A _{n+1} Chem 452, Lecture 11 – Molecular Motors 16

Regulatory light chain Vucleotide- binding site	
Chem 452, Lecture 11 - Molecular Motors 19	

• Myosin and actin are arranged into thick and thin filaments to from muscle fibers.

 Muscle contraction occurs when the myosin S1 head groups "crawl" along the actin filaments.

rs 21

Myosin

 Muscle contraction occurs when the myosin S1 head groups "crawl" along the actin filaments.

 Muscle contraction occurs when the myosin S1 head groups "crawl" along the actin filaments.

Myosin

 Optical traps (optical tweezers) have been used to monitor the movement of mysin along an actin filament.

Myosin

+ Optical traps (optical tweezers) have been used

Myosin

• Optical traps (optical tweezers) have been used to monitor the movement of mysin along an actin filament.

 Optical traps (optical tweezers) have been used to monitor the movement of mysin along an actin filament.

n used	
iser	
am	
ead	
ass slide	
ular Motors 22	

Myosin

+ The cycle:

- The exchange of ADP for ATP by myosin causes it to dissociate from the actin filament.
- A conformation change causes the myosin S1 head to move relative to the actin filament \approx 110 Å.
- ATP is hydrolyzed
- The ADP-myosin attaches to the actin filament.
 The P_i is released.
- \mathbf{P}_i release leads to a second conformational change and triggers the power stroke.
- The cycle begins again.

Myosin	
 Muscle contraction occurs when the myosin S1 head groups walk along the actin filaments. 	
Myosin Stare * More Info	
DDP-Pi	
▶ <0 600/215 0 Tutfitte	
Chem 452, Lecture 11 - Molecular Motors 25	

- Like actin, microtubules are filamentous assemblies of protein, which are used as tracks.
 They serve as tracks for kinesins and dyneins.
- + Dyneins are used in eukaryotic flagella and cilia to move one microtubule relative to another
- * Kinesins are like porters, that carry organelles and other cargo about the cell.

Chem 452, Lecture 11 - Molecular Motors 26

Movement Along Tracks

+ Dynein also moves along microtubules.

Chem 452, Lecture 11 - Molecular Motors 27

<text><text><image>

J	

27

- + Microtubles are built from two 50 kd proteins, α -tubulin and β -tubulin.
- They are important to determining cell shape and in separating chromosomes during mitosis and myosis.
 (A) (α-Tubulin (B))

Microtubles
 Like actin, microtubules are dynamic structures that constantly polymerize and depolymerize.
 Like actin, the binding and hydrolysis of nucleotides influences their assembly and
disassembly • Unlike actin, they use GTP/GDP instead of ATP/ADP
 The critical concentration for polymerization is lower for GTP-bound tubulin.
Chem 452, Lecture 11 - Molecular Motors 31

- + Like actin, microtubules are dynamic structures that constantly polymerize and depolymerize.
- Like actin, the binding and hydrolysis of nucleotides influences their assembly and disassembly
 - Unlike actin, they use GTP/GDP instead of ATP/ADP
- The critical concentration for polymerization is lower for GTP-bound tubulin.

Microtubles

- Another anticancer drug that targets microtubules is vinblastine.
 - It inhibits M-phase microtuble formation and is used to halt cell division at interphase.

- Another anticancer drug that targets microtubules is vinblastine.
- It inhibits M-phase microtuble formation and is used to halt cell division at interphase.

Chem 452, Lecture 11 - Molecular Motors 33

Kinesins

- + Like myosin, the movement is correlated to the hydrolysis of ATP.
- Unlike myosin, it is the ATP-bound form of kinesis that has the higher affinity for binding to the microtubule.

is correlated to the bound form of kinesis for binding to the Kinesin-ADP complex Chem 452, Lecture 11 - Molecular Motors 34

+ Kinesins "walk" along the microtubules.

Next up	
 Lecture 11, Molecular Motors (con'd). (Chapter 35) Bacterial flagella 	
Chem 452, Lecture 11 - Molecular Motors 38	