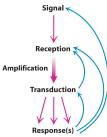

Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 3

Question of the Day: Who is the son of Sevenless?

Introduction

+ Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.



· Stimulates cell growth after injury

Chem 452, Lecture 10 - Signal Transduction 2

Introduction

+ All three examples present a common theme:

Chem 452, Lecture 10 - Signal Transduction 3

The EGF Signaling Pathway

* The **Epidermal Growth Factor** (EGF) signaling pathway provides another example of a receptor tyrosine kinase.

EGF promotes cell growth

Epidermal growth factor (EGF)

duction	

The EGF Signaling Pathway

 The Epidermal Growth Factor (EGF) signaling pathway leads to the phosphorylation of transcription factors, which then turn genes on or off.

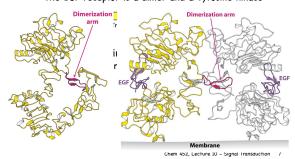
The EGF Signaling Pathway

- + Like the Insulin receptor,
- · The EGF receptor is a dimer and a tyrosine kinase

EGF-binding domain

Transmembrane helix Kinase domain

C-terminal ta


- + Unlike the Insulin receptor,
- · The dimer does not form in the absence of EGF

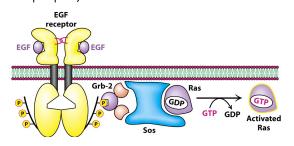
Chem 452, Lecture 10 - Signal Transduction 6

The EGF Signaling Pathway

- + Like the Insulin receptor,
 - The EGF receptor is a dimer and a tyrosine kinase

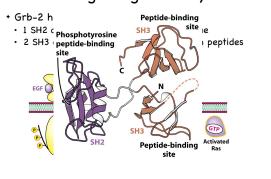
The EGF Signaling Pathway

 There is an EGF related receptor, called the Her-2 receptor, which does not require EGF binding to be active.

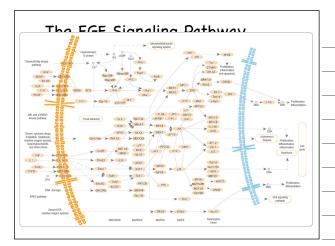

The overproduction of Her-2 is associated with certain cancers

EGF receptor

l		
1		
l=		
1		
1		
-		
-		


The EGF Signaling Pathway

+ Activation of the EGF receptor leads to cross phosphorylation of the C-terminus.



Chem 452, Lecture 10 - Signal Transduction 9

The EGF Signaling Pathway

Chem 452, Lecture 10 - Signal Transduction 10

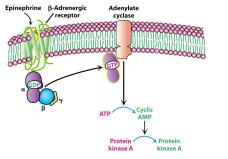
The EGF Signaling Pathway

- Ras has GTPase activity, which allows it to inactivate itself
- Ras a member of a superfamily of small G-proteins.

TABLE 14.2 Ras superfamily of GTPases

TABLE 14.2 Ras supertamily of GIPases		
Subfamily	Function	
Ras	Regulates cell growth through serine-threonine protein kinases	
Rho	Reorganizes cytoskeleton through serine-threonine protein kinases	
Arf	Activates the ADP-ribosyltransferase of the cholera toxin A subunit; reg	
	lates vesicular trafficking pathways; activates phospholipase D	
Rab	b Plays a key role in secretory and endocytotic pathways	
Ran	an Functions in the transport of RNA and protein into and out of the nucle	

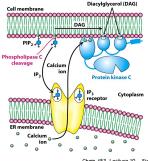
 Mutant Ras proteins, which have lost their GTPase activity, are associated with various types of cancer.


Re-occurring Themes in Signaling Pathways

- + Protein Kinases
- PKA, PKC, PDK, Akt Raf, MEK, ERK, etc.
- + Second Messengers
- cAMP, IP₂, DAG, Ca²⁺
- + Specialized binding domains
- · Pleckstrin, SH2, SH3

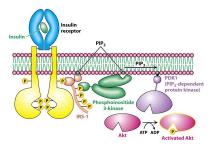
Chem 452, Lecture 10 - Signal Transduction 13

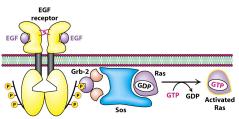
Re-occurring Themes in Signaling Pathways


+ Epinephrine

Chem 452, Lecture 10 - Signal Transduction 14

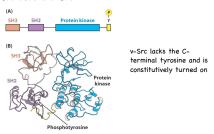
Re-occurring Themes in Signaling Pathways


+ Angiotensin II


Chem 452, Lecture 10 - Signal Transduction 15

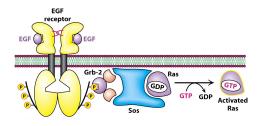
Re-occurring Themes in Signaling Pathways

+ Insulin


Re-occurring Themes in Signaling Pathways + EGF

Chem 452, Lecture 10 - Signal Transduction 17

Signal Transduction and Cancer


- + Rous Sarcoma Virus
- ${}^{\bullet}$ This virus codes for an ${\it oncogene, v-Src.}$
- v-Src versus c-Src

Chem 452, Lecture 10 - Signal Transduction 18

Signal Transduction and Cancer

+ Ras, which has lost its GTPase activity

Chem 452, Lecture 10 - Signal Transduction 19

Signal Transduction and Cancer

- Tumor-suppressor genes code for phosphatases that are used to shut down the signal transduction pathways.
- · Loss in their activities can also lead to cancers.

sphatases I	_
ancers.	_
	_
	_
	_
- Signal Transduction 20	_
,	_

Signal Transduction and Disease

* Vibrio cholera produces a toxin that covalently modifies the G_{α} G-protein.

Signal Transduction and Disease

- * Vibrio cholera produces a toxin that covalently modifies the G_{α} G-protein.
- This inhibits its GTPase activity, leaving PKA constitutively turned on.

- The PKA phosphorylates a chloride channel and a Na⁺/H⁺ exchanger, resulting in the loss of NaCl.
- This, in turn, leads to a large loss of water into the intestines.

Chem 452, Lecture 10 - Signal Transduction 22

Signal Transduction and Disease

Question:

Suppose that you were investigating a newly discovered growth factor signal transduction pathway. You found that, if you added GTP γ S, nonhydrolyzable analog of GTP,

duration of the hormonal response increased. What might you conclude?

Chem 352, Lecture 5 - Carbohydrates 2

Signal Transduction and Disease

- * Vibrio cholera produces a toxin that covalently modifies the G $_{\alpha}$ G-protein.
- This inhibits its GTPase activity, leaving PKA constitutively turned on.

- The PKA phosphorylates a chloride channel and a Na⁺/H⁺ exchanger, resulting in the loss of NaCl.
- This, in turn, leads to a large loss of water into the intestines.

3	
4	

Next up	
+ Lecture 10 con'd, Sensory Systems. (Chapter 33)	
Chem 452, Lecture 10 - Signal Transduction 25	