Chem 452 – Lecture 7 Carbohydrates 111107

Carbohydrates are one of the four major classes of biomolecules, which include the proteins, lipids and nucleic acids. In terms of total mass, carbohydrates make up the largest fraction of biomolecules in the biosphere. Carbohydrates have the basic chemical formula (CH₂O)_n and derive their diversity of structure from the the multiple stereoisomers that they can form. They play many important biological roles, including sources and storage forms of chemical energy, components of nucleic acids, and structural roles such as cell walls. The are also found covalently bonded to proteins and lipids, where they play important roles in cell-cell communication.

Introduction to Car • (CH2O)n	bohydrates
+ Chemically simple, structura	lly complex
 Nomenclature monosaccharides oligosaccharides 	
 polysaccharides 	
	Chem 452, Lecture 7 - Carbohydrates 2

Monosaccharides	
 Aldoses polyhydroxyaldehydes 	
 Ketoses polyhydroxyketones 	
 Number of carbons triose tetrose 	
• pentose • hexose • heptose	
	Chem 452, Lecture 7 - Carbohydrates 3

+ Aldotriose through aldohexoses

Monosaccharides	
+ Aldotrioses through aldohexoses	
• This figure shows only the D- enantantiomers	
 Enantiomers are named for the chirial carbon that is furthest from the carbonyl group. 	
 Most of the monosaccharides that we will encounter are D-enatiomers. 	
Chem 452, Lecture 7 - Carbohydrates 9	

Monosaccharides	
 Nomenclature for stereoisomers 	
 Enantiomers are mirror images of one another They share the same name and are 	
distinguished using D and L .	
 Diastereomers are stereoisomers with multiple chiral centers that are not mirror images of one another. 	
* Epimers are diastereomers that differ at only one chiral center.	
Chem 452, Lecture 7 - Carbohydrates 10	

- + Cyclization of aldoses and ketoses
- The aldehyde or ketone react with one of the hydroxyl groups to form a hemiacetal or hemiketal, respectively.
- This produces an additional chiral carbon.
- [,] The carbon is called the **anomeric carbon**.
- \cdot The two new stereoisomers are referred to as the α and β anomers.

- + Conformations of Monosaccharides
- Monosaccharides can have different conformations.

- + Conformations of Monosaccharides
- Monosaccharides can have different conformations.

Nonosaccharides		
Conformations of Monosaccharides		
Question:]	
Which of following conformations for β -D-glucopyranose is predicted to be more stable:		
B. CH ₂ OH OH H OH OH H		
он н он		
	es 20	

Monosaccharides	
 Monosaccharides can be chemically modified to produce derivative. Phosphate esters 	
 Deoxy sugars One of the hydroxyl groups is replaced with a hydrogen 	
 Amino sugars One of the hydroxyl groups is replaced with an amino group. 	
Chem 452, Lecture 7 - Carbohydrates 21	

- Monosaccharides can be chemically modified to produce derivative.
- Phosphate esters
- Deoxy sugars
 - One of the hydroxyl groups is replaced with a hydrogen
- Amino sugars
 One of the hydroxyl groups is replaced with an amino group.

Glycosides

- The hemiacetal or hemiketal carbon (the anomeric carbon) can react with a hydroxyl group to form an acetal or ketal.
- The bond formed is also called a **glycosidic bond**.

• Unlike hemiacetals and hemiketals, acetals and ketals prevent the pyranose or furanose ring from reopening.

Glycosides

- + Cu²⁺ can be used to distinguish hemiacetals and hemiketals from acetals and ketals.
- Sugars that contain hemiacetals or hemiketals can reduce Cu²⁺ to Cu⁺ and are called reducing sugars.

Glycosides

 Unlike hemiacetals and hemiketals, acetals and ketals prevent the pyranose or furanose ring from reopening.

Glycosides

 Unlike hemiacetals and hemiketals, acetals and ketals prevent the pyranose or furanose ring from reopening.

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex 	
carbohydrates.	
* monosaccharide + monosaccharide =	
disaccharide 32	
 Important disaccharides include Maltose (obtained from starch) 	
 Cellobiose (obtained from cellulose) Lactose (milk sugar) 	
 Sucrose (table sugar) 	
Chem 452, Lecture 7 - Carbohydrates	

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex CH₂OH CH₂OH CH₂OH CH₂OH OH 	
HO H H OH H OH B anomer of maltose	
(α-D-Glucopyranosyl-(1→4)-β-D-glucopyranose) • Lactose (milk sugar)	
 Sucrose (table sugar) Chem 452, Lecture 7 - Carbohydrates 	

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex carbohydrates. 	
 monosaccharide + monosaccharide = disaccharide 32 	
 Important disaccharides include Maltose (obtained from starch) Cellobiose (obtained from cellulose) Lactose (milk sugar) Sucrose (table sugar) 	
Chem 452, Lecture 7 - Carbohydrates	

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex carbohydrates. 	
 monosaccharide + monosaccharide = disaccharide 32 	
 Important disaccharides include Maltose (obtained from starch) Cellobiose (obtained from cellulose) Lactose (milk sugar) Sucrose (table sugar) 	
Chem 452, Lecture 7 - Carbohydrates	

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex carbohydrates. 	
 monosaccharide + monosaccharide = disaccharide 32 	
 Important disaccharides include Maltose (obtained from starch) Cellobiose (obtained from cellulose) Lactose (milk sugar) Sucrose (table sugar) 	
Chem 452, Lecture 7 - Carbohydrates	

Complex Carbohydrates	
 The glycosidic bond is used to connect two monosacchrides together to form a complex carbohydrates. 	
 monosaccharide + monosaccharide = disaccharide 32 	
 Important disaccharides include Maltose (obtained from starch) Cellobiose (obtained from cellulose) Lactose (milk sugar) Sucrose (table sugar) 	
Chem 452, Lecture 7 - Carbohydrates	

Comp	lex	Car	bohy	ydı	rates
------	-----	-----	------	-----	-------

 Because a hemiacetal or hemiketal can open
and expose an aldehyde or ketone, they can
still serve as reducing agents.
 This is used to distinguish the two monosaccharides

•	This is used to distinguish the two monosaccharides
	in a disaccharide as the reducing and the
	nonreducing ends.

Complex Carbohydrates
 Monosaccharides also from glycosidic bonds to non-saccharides. For example, nucleotides. ATP UDP-glucose NAD and NADP FMN and FAD
Chem 452 Lecture 7 - Carbobudintes 35

Complex Carbohydrates

+ Monosaccharides also from glycosidic bonds to

Complex Carbohydrates	
 Monosaccharides also from glycosidic bonds to non-saccharides. For example, nucleotides. ATP 	
 UDP-glucose NAD and NADP 	
• FMN and FAD	
Chem 452, Lecture 7 - Carbohydrates 35	

Complex Carbohydrates	
 Monosaccharides also from glycosidic bonds to non-saccharides. For example, nucleotides. 	
 ATP UDP-glucose NAD and NADP 	
• FMN and FAD	
Chem 452, Lecture 7 - Carbohydrates 35	

Next up	
+ Unit IV, Lecture 7 - Carbohydrates, cond	
Chem 452, Lecture 7 – Carbohydrates 36	