Chem 452 – Lecture 6 Regulatory Strategies	
Part 2	
Question of the Day: What is the rationale behind using feedback inhibition to regulate metabolism.	

Introduction	
 Metabolism comprises a vast network of interconnecting metabolic pathways. 	
Chem 452, Lecture 6 - Regulatory Strategies 2	

Introduction

- One of the primary strategies for regulating metabolism is to regulate the activity of some of the key enzymes in this network.
- + There are several mechanisms used to do this:
- Allosteric Control
- Multiple Forms of Enzymes (Isozymes)
 Reversible Covalent Modifications
- Proteolytic Activation
- Controlling the level of Enzyme Present

Chem 452, Lecture 6 - Regulatory Strategies 3

Introduction	
 One of the primary strategies for regulating metabolism is to regulate the activity of some of the key enzymes in this network. 	
 There are several mechanisms used to do this: Allosteric Control Multiple Forms of Enzymes (Isozymes) 	
 Reversible Covalent Modifications Proteolytic Activation 	
 Controlling the level of Enzyme Present 	
Chem 452, Lecture 6 - Regulatory Strategies 4	

Regulation by Covalent Modification

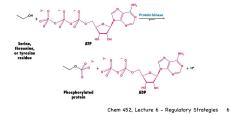
 Some enzymes are regulated by reversible, covalent modifications

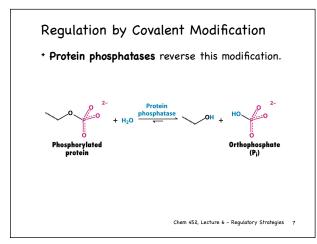
Modification	Donor molecule	Example of modified protein	Protein function
Phosphorylation	АТР	Glycogen phosphorylase	Glucose homeostasis; energy transduction
Acetylation	Acetyl CoA	Histones	DNA packing; transcription
Myristoylation	Myristoyl CoA	Src	Signal transduction
ADP ribosylation	NAD ⁺	RNA polymerase	Transcription
Farnesylation	Farnesyl pyrophosphate	Ras	Signal transduction
y-Carboxylation	HCO,	Thrombin	Blood clotting
Sulfation	3'-Phosphoadenosine-5'- phosphosulfate	Fibrinogen	Blood-clot formation
Ubiquitination	Ubiquitin	Cyclin	Control of cell cycle

Chem 452, Lecture 6 - Regulatory Strategies 5

Regulation by Covalent Modification

 Some enzymes are regulated by reversible, covalent modifications

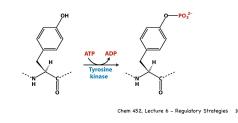

TABLE 10.1 Common covalent modifications of protein activity


Modification	Donor molecule	Example of modified protein	Protein function
Phosphorylation	АТР	Glycogen phosphorylase	Glucose homeostasis; energy transduction
Acetylation	Acetyl CoA	Histones	DNA packing; transcription
Myristoylation	Myristoyl CoA	Src	Signal transduction
ADP ribosylation	NAD ⁺	RNA polymerase	Transcription
Farnesylation	Farnesyl pyrophosphate	Ras	Signal transduction
y-Carboxylation	HCO,	Thrombin	Blood clotting
Sulfation	3'-Phosphoadenosine-5'- phosphosulfate	Fibrinogen	Blood-clot formation
Ubiguitination	Ubiguitin	Cyclin	Control of cell cycle


Chem 452, Lecture 6 - Regulatory Strategies 5

Regulation by Covalent Modification

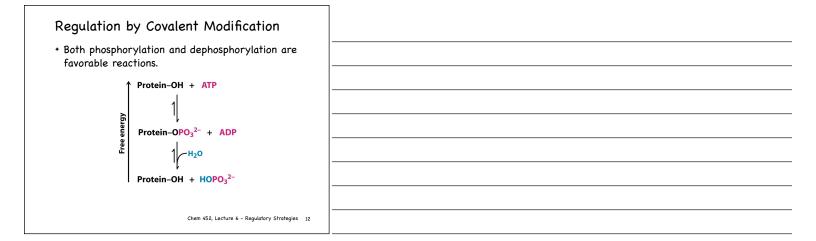
- + Phosphorylation/Dephosphorylation is the most common form of covalent modification.
- The hydroxyl groups of Serines and Tyrosines are phosphorylated by protein kinases to produce phosphate esters.



Regulation b	y Covalent Modification	
 Both phosphor favorable reac 	ylation and dephosphorylation are tions.	
1	Protein-OH + ATP	
у.	1	
energy	Protein-OPO3 ²⁻ + ADP	
Free	H ₂ 0	
	ہ Protein–OH + HOPO ₃ ^{2–}	
	Chem 452, Lecture 6 - Regulatory Strategies 8	

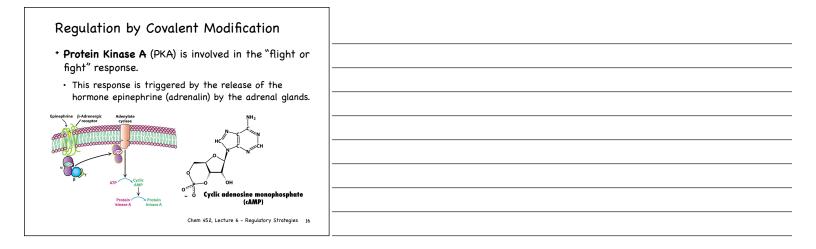
TABLE 10.2 Examples of serine a	nd threonine kinases and their activating signals	
Signal	Enzyme	
Cyclic nucleotides	Cyclic AMP-dependent protein kinase	
Ca ²⁺ and calmodulin	Cyclic GMP-dependent protein kinase Ca ²⁺ -calmodulin protein kinase	
AMP	Phosphorylase kinase or glycogen synthase kinase 2 AMP-activated kinase	
Diacylglycerol	Protein kinase C	
Metabolic Intermediates	Many target-specific enzymes, such as pyruvate	
and other "local" effectors	dehydrogenase kinase and branched-chain	
	ketoacid dehydrogenase kinase	

Regulation by Covalent Modification

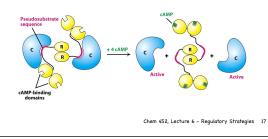

- + Tyrosines can also be phosphorylated
- Only observed in muticellular eukaryotes
- Tyrosine kinases are involved in growth regulation.
- Some cancers are associated with malfunctioning tyrosine kinases

0	

Regulation by Covalent Modification

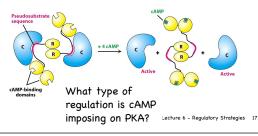

- Phosphate groups are well suited to altering an enzyme's activity.
- Phosphorylation adds two negative charges to a protein.
- $\boldsymbol{\cdot}$ Phosphates are effective at forming hydrogen bonds.
- Phosphorylation provides a source of free energy for conformational changes in a proteins ($\Delta\,{\rm G}^{\,\circ'}\text{=-50 kJ/mol})$
- Using enzymes to regulate enzymes can be used to produced a large amplification of a regulatory signal.
- By using ATP as a source of phosphate groups, phosphorylation is sensitive to the cell's energy supply. Chem 452, Lecture 6 - Regulatory Strategies 11

Regulation by Covalent Modification	
 The 500 or so protein kinases vary in specificity. Some are specific and some are multifuncitonal 	
 The consensus sequence for multifunctional kinases is 	
-Arg-Arg-X- Ser -Z-	
or	
-Arg-Arg-X- Thr -Z-	
 Where X is a small amino acid, viz. Gly or Ala and Z is a large hydrophobic amino acid, viz. Met or Ile 	
2 is a large nyarophobic amino acia, viz. Met or he	
Chem 452, Lecture 6 - Regulatory Strategies 13	

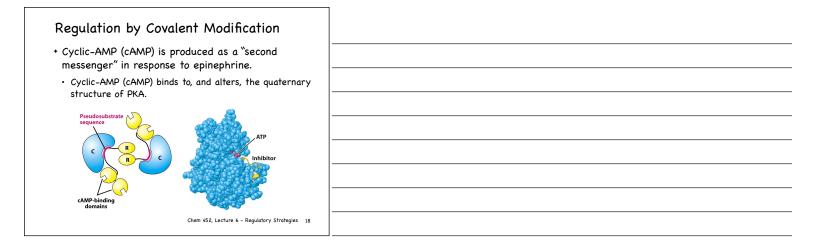

Regulation by Covalent Modification	
 As the protein kinases modify the activity of key enzymes, they, must be regulated in response to their corresponding signal. 	
* Protein Kinase A (PKA) provides a good example.	
Chem 452, Lecture 6 - Regulatory Strategies 14	

Regulation by Covalent Modification	
 Protein Kinase A (PKA) is involved in the "flight or fight" response. 	
 This response is triggered by the release of the hormone epinephrine (adrenalin) by the adrenal glands. 	
Epinephrine ()-Adrenergic Adexylate	
Cyclic ANP	
Protein VProtein kinase A kinase A	
Chem 452, Lecture 6 - Regulatory Strategies 15	

Regulation by Covalent Modification

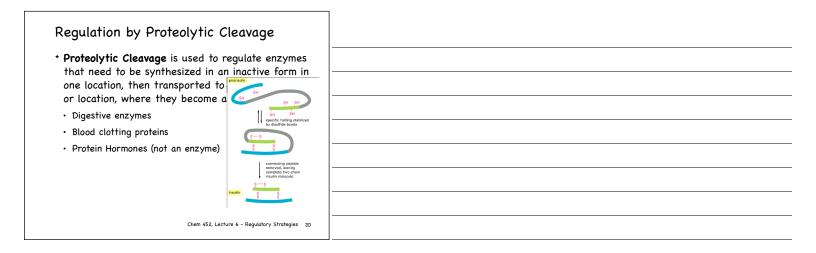

- Cyclic-AMP (cAMP) is produced as a "second messenger" in response to epinephrine.
- Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

Regulation by Covalent Modification Cyclic-AMP (cAMP) is produced as a "second


- messenger" in response to epinephrine.
- Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

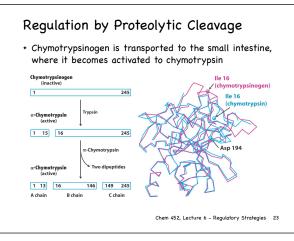
Regulation by Covalent Modification Cyclic-AMP (cAMP) is produced as a "second messenger" in response to epinephrine. Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

Chem 452, Lecture 6 - Regulatory Strategies 17



Regulation by Covalent Modification		
 The regulation subunit contains a "pseudosubstrate" sequence that acts as a competitive inhibitor of PKA. 		
• Arg-Arg-Asn- Ala -Ile	ð	
ATP	Clu 127 Clu 127 Clu 170 ² Clu 170 ² Ann (side chain not shown)	
	Giu 230 go lie	
	-Arg-Asn-Ala-Ile-	
	Chem 452, Lecture 6 - Regulatory Strategies 19	

Regulation	by	Proteol	ytic	Cleavage

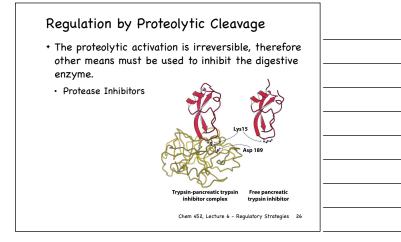

- Proteolytic Cleavage is used to regulate enzymes that need to be synthesized in an inactive form in one location, then transported to a different time or location, where they become active.
- Digestive enzymes
- Blood clotting proteins
- Protein Hormones (not an enzyme)

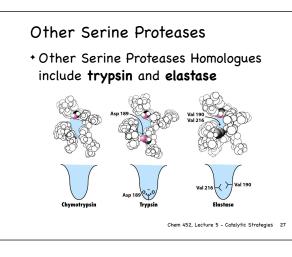
Chem 452, Lecture 6 - Regulatory Strategies 20

egulation b	y Proteolytic (Cleavage	
Digestive enzy orm called a	mes are synthesize	ed in an inactive	e 📃
	zymogen. nd pancreatic zymogens		
Site of synthesis	Zymogen	Active enzyme	
Stomach Pancreas Pancreas	Pepsinogen Chymotrypsinogen Trypsinogen	Pepsin Chymotrypsin Trypsin	
Pancreas Pancreas	Procarboxypeptidase Proelastase	Carboxypeptidase Elastase	
	Chem 452, Lec	ture 6 - Regulatory Strategies	5 21

Regulation by Proteolytic Cleavage	
 Chymotrypsin provides a good example. 	
 Chymotrypsin is synthesized by the pancreas in an inactive form, chymotrypsinogen. 	
Chymotrypsinogen (mactive) 1 245	
Chymotrypsin (active)	
e-Chymotrysin (active) Two dipaptides	
(1 13) [16 146) [149 245] A chain B chain C chain	
Chem 452, Lecture 6 - Regulatory Strategies 22	

1	

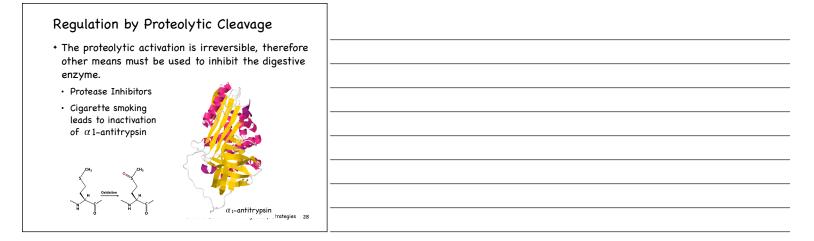

Regulation by Proteoly	rtic Cleavage				
Protein Structure - Chym	Protein Structure - Chymotrypsin				
	<form></form>				
Che	em 452, Lecture 6 - Regulatory Str	ategies 24			


Regulation by Proteolytic Cleavage

+ Digestive enzymes

 Other examples, including other pancreatic zymogens trypsinogen, proelastase, procarboxypeptidase and prolipase, are activated by proteolytics cleavage

Trypsinogen Trypsin Proelastase Chymotrypsinogen Chymotry



Regulation by Proteolytic Cleavage

- The proteolytic activation is irreversible, therefore other means must be used to inhibit the digestive enzyme.
- Protease Inhibitors
- Cigarette smoking leads to inactivation of α 1-antitrypsin

Next up	
+ Unit IV, Lecture 7 – Carbohydrates (Chapter 11)	
Chem 452, Lecture 6 - Regulatory Strategies 29	