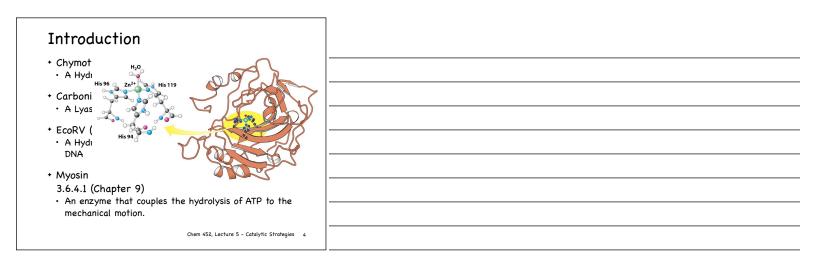

Chem 452 – Lecture 5 Catalytic Strategies Part 3

Question of the Day: Transition states in enzyme catalyzed reactions are usually very unstable and therefore hard to observe. What was the trick used by investigators to observe the transition state for the the hydrolyis of ATP by the myosin motor domain ATPase?

Introductio	n
+ Enzymes exhibit	t both catalytic power and
specificity	
+ We will conside	r closely, four examples.
	Chem 452, Lecture 5 - Catalytic Strategies 2


Introduction
 Some Basic Catalytic Principles
• Covalent Catalysis
 General Acid/Base Catalysis
Catalysis by Approximation
• Metal Ion Catalysis
 Transition State Stabilization
Chem 452, Lecture 5 - Catalytic Strategies 3

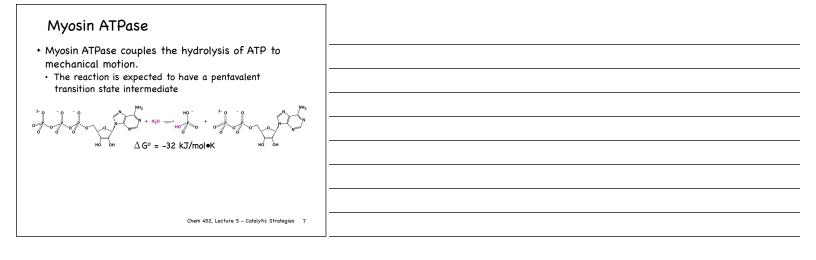
Introduction	
 Chymotrypsin (1gct) 3.4.21.1 A Hydrolase, which cleaves peptide bonds in proteins 	
 Carbonic anhydrase (1ca2) 4.2.1.1 A Lyase, which adds water to CO₂. 	
 EcoRV (1rvb) 3.1.21.4 A Hydrolase, which cleave phosphodiester bonds in DNA 	
 Myosin motor domain ATPase (1fmv & 1fmw) 3.6.4.1 (Chapter 9) An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 4	

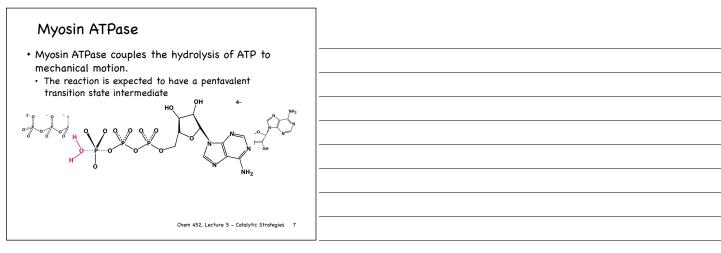
Introduction

- + Chymotrypsin (1gct) 3.4.21.1
- A Hydrolase, which cleaves peptide bonds in proteins
- Carbonic anhydrase (1ca2) 4.2.1.1
 A Lyase, which adds water to CO₂.
- + EcoRV (1rvb) 3.1.21.4
- A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (1fmv & 1fmw)
 3.6.4.1 (Chapter 9)
 - An enzyme that couples the hydrolysis of ATP to the mechanical motion.

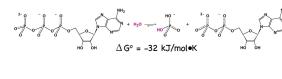
Introduction	
 Chymotrypsin (1gct) 3.4.21.1 A Hydrolase, which cleaves peptide bonds in proteins 	
 Carbonic anhydrase (1ca2) 4.2.1.1 A Lyase, which adds water to CO₂. 	
 EcoRV (1rvb) 3.1.21.4 A Hydrolase, which cleave phosphodiester bonds in DNA 	
 Myosin motor domain ATPase (1fmv & 1fmw) 3.6.4.1 (Chapter 9) An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 4	

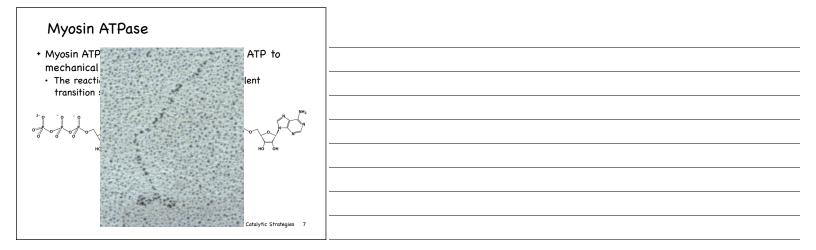
Introduction	
 Chymotrypsi Mg²⁺-binding sites A Hydrolase 	
Carbonic anl A Lyase, wh	
 EcoRV (1rvb) A Hydrolase DNA 	
 Myosin motor domain ATPase (1fmv & 1fmw) 3.6.4.1 (Chapter 9) 	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 4	

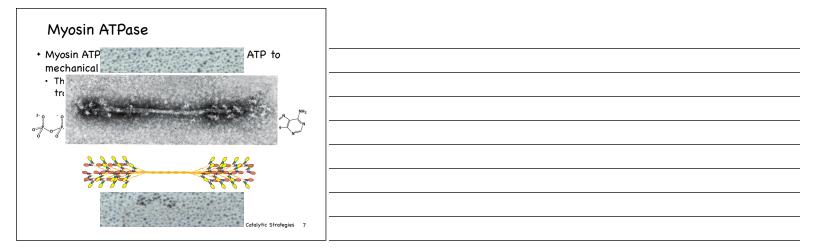

- + Chymotrypsin (1gct) 3.4.21.1
- A Hydrolase, which cleaves peptide bonds in proteins
- Carbonic anhydrase (1ca2) 4.2.1.1
 A Lyase, which adds water to CO₂.
- + EcoRV (1rvb) 3.1.21.4
- A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (1fmv & 1fmw)
 3.6.4.1 (Chapter 9)
 - An enzyme that couples the hydrolysis of ATP to the mechanical motion.

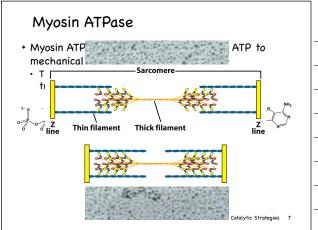

Chem 452, Lecture 5 - Catalytic Strategies 4

Introduction

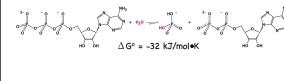

- + Chymotrypsin (1gct) 3.4.21.1
- A Hydrolase, which cleaves peptide bonds in proteins
- Carbonic anhydrase (1ca2) 4.2.1.1
 A Lyase, which adds water to CO2.
- * EcoRV (1rvb) 3.1.21.4
- A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (<u>lfmv</u> & <u>lfmw</u>) 3.6.4.1 (Chapter 9)
- An enzyme that couples the hydrolysis of ATP to the mechanical motion.

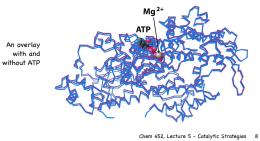

Myosin ATPase	
 ATP is considered the energy currency of the cell. The hydrolysis of ATP is used to drive many unfavorable processes Reactions (ligases) 	
 Transport across membranes Mechanical motion 	
+ For example, pyruvate carboxylase	
 Couples the hydrolysis of ATP to the formation of a carbon-carbon bond. 	
$H_0C - C - C - OH + CO_2 + ATP + H_0O$	
Pyruvate 0 0 H0CCH ₂ COH + ADP + Pi	
Oxaloaostae Chem 452, Lecture 5 - Catalytic Strategies 6	

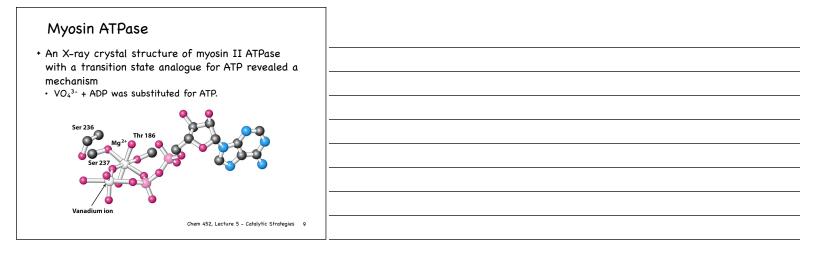




- + Myosin ATPase couples the hydrolysis of ATP to mechanical motion.
- The reaction is expected to have a pentavalent transition state intermediate

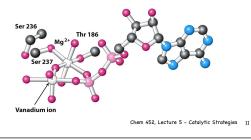



- + Myosin ATPase couples the hydrolysis of ATP to mechanical motion.
- The reaction is expected to have a pentavalent transition state intermediate

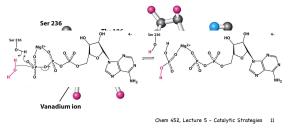

Chem 452, Lecture 5 - Catalytic Strategies 7

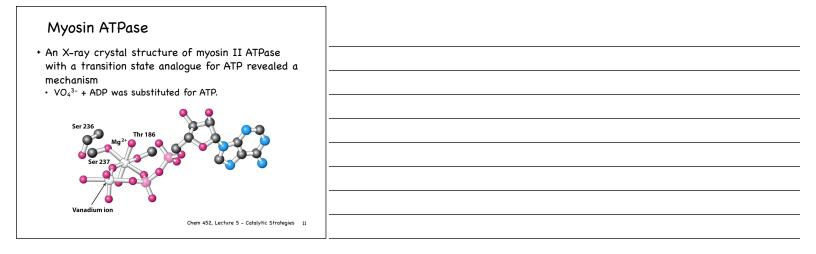
Myosin ATPase

 An X-ray crystal structure of myosin II ATPase with ATP bound did not reveal how the γ -phosphate would be attacked by water.

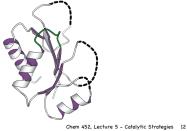


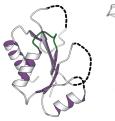
Myosin ATPase	
 In order to stabilize the transition state the Myosin II ATPase must undergo a marked conformational change 	-
	-
Chem 452, Lecture 5 - Catalytic Strategies	10 -


- An X-ray crystal structure of myosin II ATPase with a transition state analogue for ATP revealed a mechanism
 - + VO₄³⁻ + ADP was substituted for ATP.



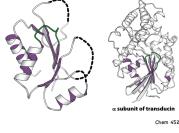
Myosin ATPase


- An X-ray crystal structure of myosin II ATPase with a transition state analogue for ATP revealed a mechanism
- + VO₄³⁻ + ADP was substituted for ATP.


 Many NPTase share a similar binding domain for the nucleotide, and contains a peptide look called the "P-loop"

Myosin ATPase

 Many NPTase share a similar binding domain for the nucleotide, and contains a peptide look called the "P-loop"



Chem 452, Lecture 5 - Catalytic Strategies 13

Myosin ATPase

 Many NPTase share a similar binding domain for the nucleotide, and contains a peptide look called the "P-loop"

ng domain for tide look called	
2	
52, Lecture 5 - Catalytic Strategies 13	

Myosin ATPase	
 Many NPTase share a similar binding domain for the nucleotide, and contains a peptide look called the "P-loop" 	
β subunit of ATP synthase Chem 452, Lecture 5 - Catalytic Strategies 13	
Next up	

+	Regulatory	Strategies	(Chapter 10)	