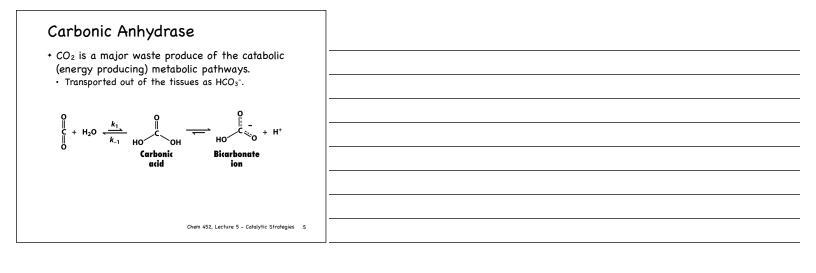
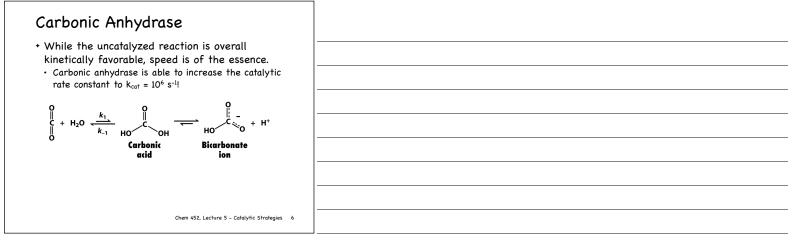
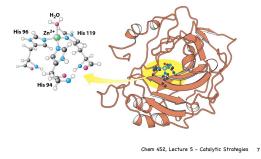
Chem 452 – Lecture 5 Catalytic Strategies Part 2

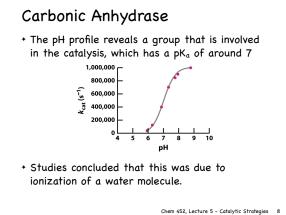

Question of the Day: What makes EcoRV a "kinky" enzyme, and how does this character trait help this enzyme to cleave DNA only at its cognate sequence?


Introduction
21111044011011
 Enzymes exhibit both catalytic power and specificity
+ We will consider closely, four examples.
Chem 452, Lecture 5 - Catalytic Strategies 2
Chem 452, Lecture 5 - Catalytic Strategies 2

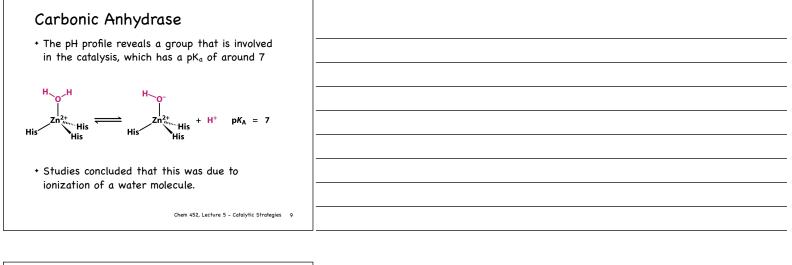
- +Chymotrypsin (<u>1gct</u>) 3.4.21.1
- + A Hydrolase, which cleaves peptide bonds in proteins
- +Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1
- + A Lyase, which adds water to CO2.
- +EcoRV (<u>1rvb</u>) 3.1.21.4
- + A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (<u>lfmv</u> & <u>lfmw</u>)
 3.6.4.1
- An enzyme that couples the hydrolysis of ATP to the mechanical motion.

Chem 452, Lecture 5 - Catalytic Strategies 3


Introduction	
+Chymotrypsin (<u>1gct</u>) 3.4.21.1	-
 A Hydrolase, which cleaves peptide bonds in proteins 	
+Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1	
 A Lyase, which adds water to CO₂. 	
★EcoRV (<u>1rvb</u>) 3.1.21.4	
 A Hydrolase, which cleave phosphodiester bonds in DNA 	
Myosin motor domain ATPase (<u>lfmv</u> & <u>lfmw</u>)	
3.6.4.1	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 4	

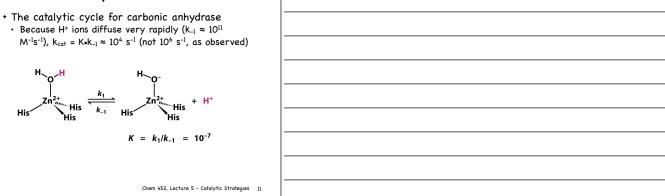


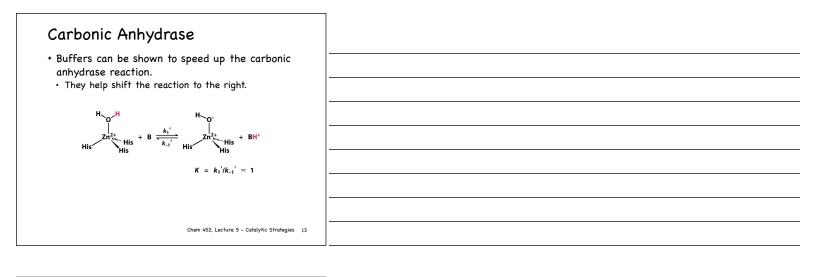
Carbonic Anhydrase

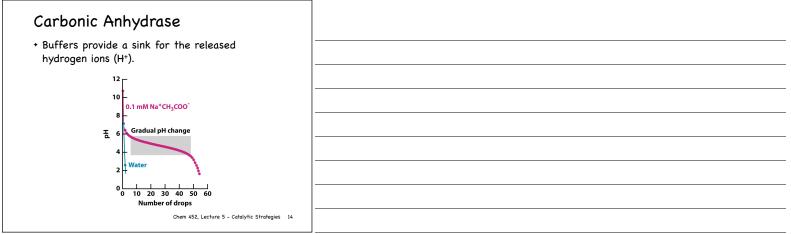

- The nucleophile in this reactions is OH⁻
- A Zn^{2+} ion is involved in generating the nucleophile



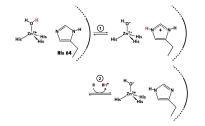
1			

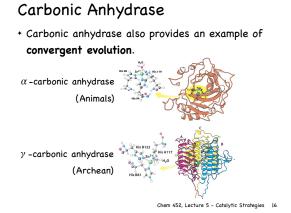






Carbonic Anhydrase


Carbonic Anhydrase	
 Buffers can be shown to speed up the carbonic anhydrase reaction. 	
CH3 1, 2-Dimethylbenzinidazole (buffer) 0 10 20 30 40 50 60 (Buffer), mU	
Chem 452, Lecture 5 - Catalytic Strategies 12	



Carbonic Anhydrase

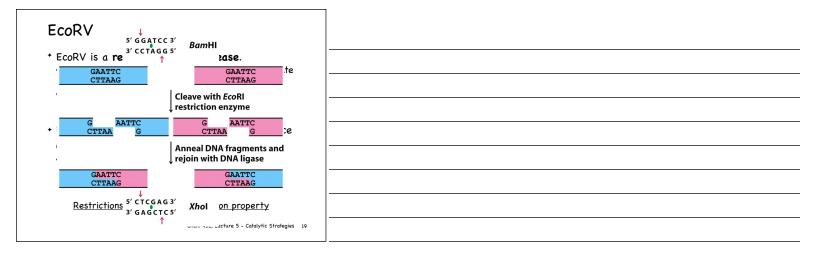
 His64 also helps mediate the the flow of H⁺ away from the active site and to the buffer.

Chem 452, Lecture 5 - Catalytic Strategies 15

Introduction	
←Chymotrypsin (<u>1gct</u>) 3.4.21.1	
 A Hydrolase, which cleaves peptide bonds in proteins 	
+Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1	
 A Lyase, which adds water to CO₂. 	
+EcoRV (<u>1rvb</u>) 3.1.21.4	
+ A Hydrolase, which cleave phosphodiester bonds in DNA	
Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)	
3.6.4.1	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 17	

- +Chymotrypsin (<u>1gct</u>) 3.4.21.1
- + A Hydrolase, which cleaves peptide bonds in proteins
- +Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1
- + A Lyase, which adds water to CO_2 .
- +EcoRV (<u>1rvb</u>) 3.1.21.4
- + A Hydrolase, which cleave phosphodiester bonds in DNA
- +Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)
 - 3.6.4.1
 - An enzyme that couples the hydrolysis of ATP to the mechanical motion.

Chem 452, Lecture 5 - Catalytic Strategies 18

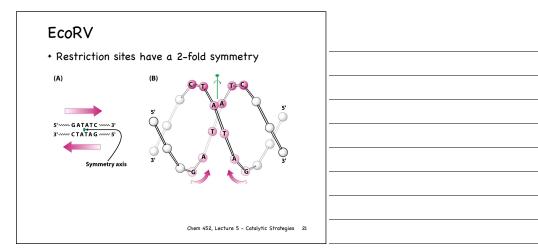

EcoRV

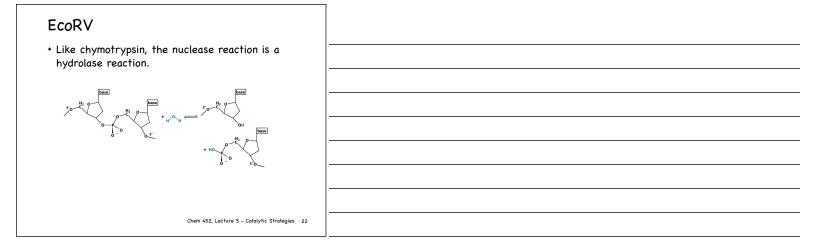
- * EcoRV is a **restriction endonuclease**.
- It is a good model for demonstrating high substrate specificity.
- The substrate is a specific sequence called the **cognate** sequence.
- + EcoRV specifically cleaves DNA at the sequence **GATATC**
 - Like with many restriction endonucleases, the sequence for the complementary strand of the cognate sequence reads the same, but backwards.

Restrictions sites share this common property

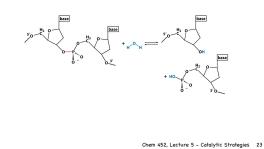
Chem 452, Lecture 5 - Catalytic Strategies 19

EcoRV 🖡	
5' GGATCC 3'	BamHI
+ EcoRV is a re ^{3′ CCTAGG 5′}	ease.
• It is a good ı 🖕	ng high substrate
specificity. 5' GAATTC 3' • The substrate ^{3' CTTAAG 5'}	EcoRI e called the
cognate sequ	e callea the
- · · ·	
5' ggicc 3' + EcoRV specifi 3' ccgg 5'	HaellI t the sequence
GATATC	
• Like with mai 5' GCGC 3'	leases, the
sequence for 3' cg cg 5' cognate sequi	rand of the but backwards.
u	but backwaras.
Restrictions 5' CTCGAG3' 3' GAGCTC5'	Xhol on property
1	, _3cture 5 - Catalytic Strategies 19

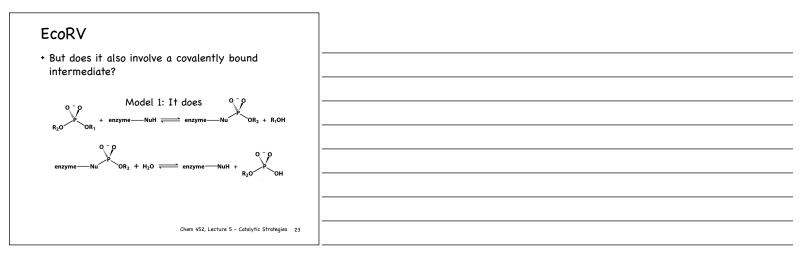



- * EcoRV is a **restriction endonuclease**.
- It is a good model for demonstrating high substrate specificity.
- The substrate is a specific sequence called the **cognate** sequence.
- + EcoRV specifically cleaves DNA at the sequence **GATATC**
- Like with many restriction endonucleases, the sequence for the complementary strand of the cognate sequence reads the same, but backwards.

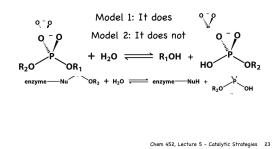
Restrictions sites share this common property

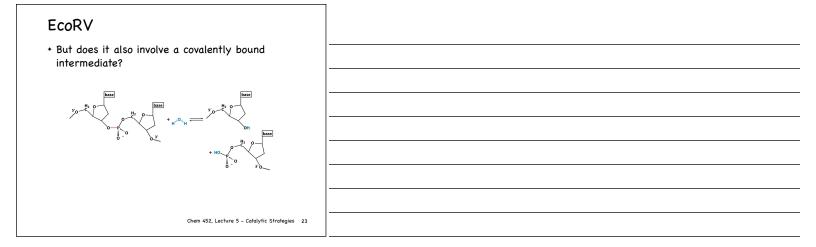

Chem 452, Lecture 5 - Catalytic Strategies 19

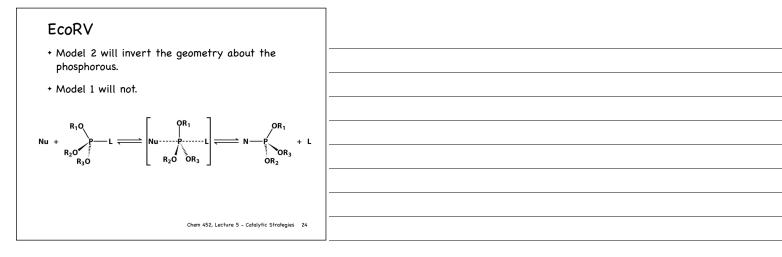
EcoRV • EcoRV is a restriction endonuclease. • In conjunction with methylases, restriction endonucleases protect bacteria from viruses. • They have also become a powerful tool for molecular biologists. Cleaved Not cleaved $\frac{1}{y' - ctartaG - y'} = \frac{1}{y' - ctartaG - y'} = \int_{u}^{u} \int_{$



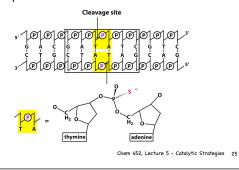
 But does it also involve a covalently bound intermediate?

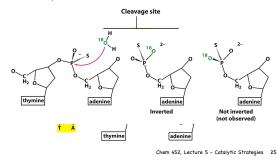


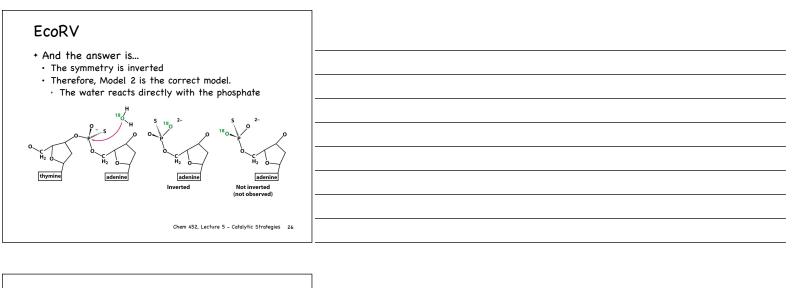




+ But does it also involve a covalently bound intermediate?

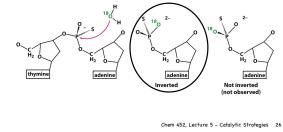


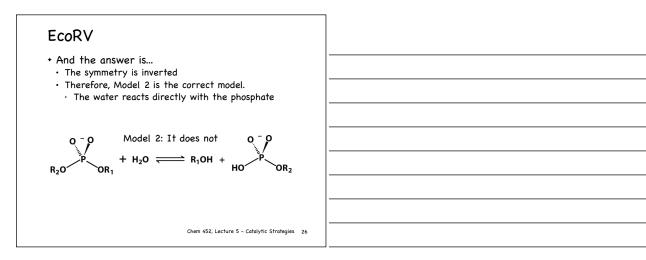

+ A phosophorothionate label was used to answer this question.



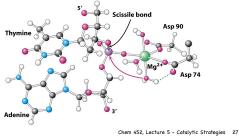
EcoRV

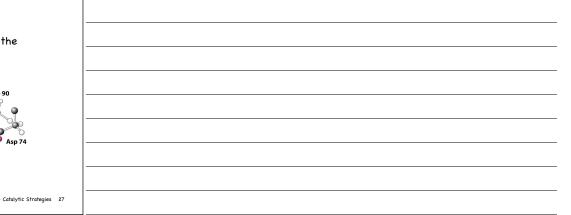
+ A phosophorothionate label was used to answer this question.

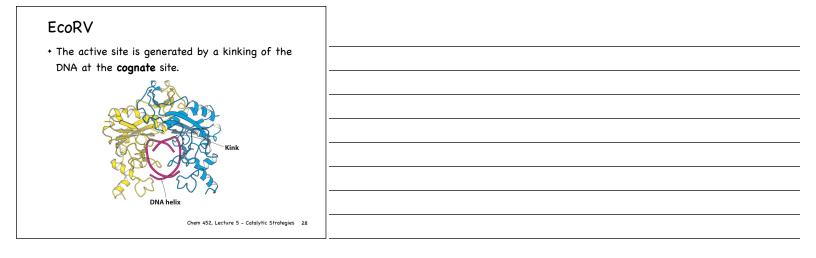


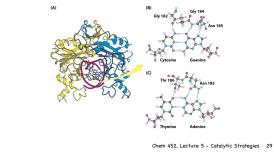


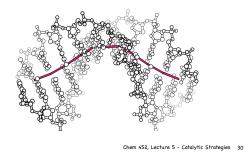
- + And the answer is...
- The symmetry is inverted
- Therefore, Model 2 is the correct model.
 The water reacts directly with the phosphate

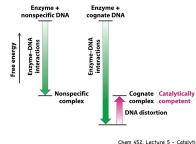




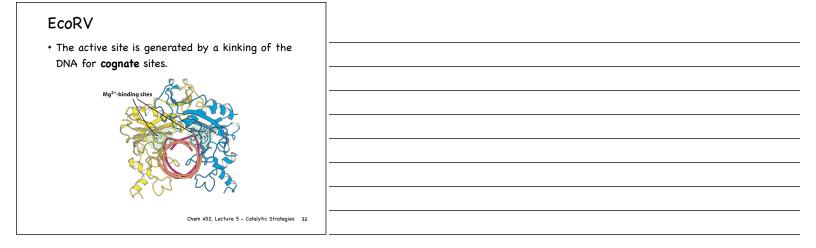


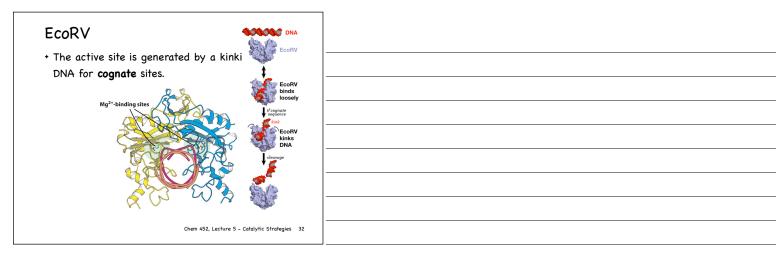

 Like carbonic anhydrase, a metal ion (Magnesium) is involved in generating the nucleophile.


• The active site is generated by a kinking of the DNA for **cognate** sites.


EcoRV

+ The active site is generated by a kinking of the DNA for **cognate** sites.




EcoRV

• The active site is generated by a kinking of the DNA for **cognate** sites.

 The E. coli bacteria is protected from the 	
EcoRV through a methylation tha blocks	
formation of the active site.	
EcoRV	
Asn 185	
Methyl group	
Thymine Adenine	
Methylated DNA	
Chem 452, Lecture 5 - Catalytic Strategies 33	

Next up	
 Myosin motor domain ATPase (1fmv & 1fmw) 3.6.4.1 (Chapter 9) 	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
 Regulatory Strategies (Chapter 10) 	
Chem 452, Lecture 5 - Catalytic Strategies 34	