Chem 452 – Lecture 5 Catalytic Strategies Part 1

Question of the Day. What type of substrate sequencing, **order sequential**, **random sequential**, or **ping-pong**, is displayed by the enzyme chymotrypsin?

Introduction
 Enzymes exhibit both catalytic power and specificity
 We will consider closely, four examples.
Chem 452, Lecture 5 - Catalytic Strategies 2

Introduction

- + Chymotrypsin (<u>1gct</u>) 3.4.21.1
- A Hydrolase, which cleaves peptide bonds in proteins
- + Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1
- A Lyase, which adds water to CO2.
- + EcoRV (1rvb) 3.1.21.4
- A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>) 3.6.4.1
- An enzyme that couples the hydrolysis of ATP to the mechanical motion.
 Chem 452, Lecture 5 - Catalytic Strategies 3

Introduction

+ The Enzyme Commission "names" for enzymes

Class	Type of reaction	Example	Chapter
1. Oxidoreductases	Oxidation-reduction	Lactate dehydrogenase	16
2. Transferases	Group transfer	Nucleoside monophosphate kinase (NMP kinase)	9
3. Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	Chymotrypsin	9
4. Lyases	Addition or removal of groups to form double bonds	Fumarase	17
5. Isomerases	lsomerization (intramolecular group transfer)	Triose phosphate isomerase	16
6. Ligases	Ligation of two substrates at the expense of ATP hydrolysis	Aminoacyl-tRNA synthetase	30

sion "names" for			
	Example	Chapter	
	Lactate dehydrogenase Nucleoside monophosphate	16 9	
f	kinase (NMP kinase) Chymotrypsin	9	
	Fumarase	17	
	Triose phosphate isomerase	16	
s	Aminoacyl-tRNA synthetase	30	
c	hem 452, Lecture 5 - Catalytic S	Strategies	4

Introduction

- Structural and mechanistic comparisons of enzyme action are sources of insight into the evolutionary history of enzymes.
- Metabolic Reconstruction
 - Zhang, Ying et al., "Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima" <u>Science</u> <u>2009, 325, 1544–1549</u>

Introduction

- + Some Basic Catalytic Principles
- Covalent Catalysis
- General Acid/Base Catalysis
- Catalysis by Approximation (Juxtaposition, or the proximity effect)
- Metal Ion Catalysis
- Transition state stabilization

Chem 452, Lecture 5 - Catalytic Strategies 8

Introduction

- + Some Basic Catalytic Principles
- Covalent Catalysis
- General Acid/Base Catalysis
- Catalysis by Approximation (Juxtaposition, or the proximity effect)
- Metal Ion Catalysis
- Transition state stabilization

Chymotrypsin

 The hydrolysis of the peptide bond is thermodynamically favorable, but kinetically unfavorable.

e peptide bond is favorable, but $R_1 - \int_0^0 + R_2 - NH_3^+$ $R_1 - \int_0^0 + R_2 - NH_3^+$ $R_1 - \int_0^0 + R_2 - NH_3^+$ Chem 452, Lecture 5 - Catalytic Strategies 10

Chymotrypsin

- Chymotrypsin overcomes this by producing a powerful alkoxide nucleophile, in situ.
- This is an example of covalent catalysis

Chymotrypsin

 Chymotrypsin cleaves peptide bonds to the carboxy side of large non polar amino acid residues.

Chymotrypsin

 The chymotrypsin reaction can be followed using a chromogenic substrate.

Chymotrypsin

+ Stop-flow kinetics experiments suggest a covalently bound intermediate is involved.

Chymotrypsin

+ The reactive Ser 195 is part of a **catalytic triad**.

Chymotrypsin Catalytic Cycle	
+ Step 6: Transition state formation	
Oxyanion hole	
Tetrahedral Acyl-enzyme	
Chem 452, Lecture 5 - Catalytic Strategies 25	

Chymotrypsin Catalytic Cycle

Putting it all together:
 Step-by-Step through the catalytic cycle
 Glick to start animation)
 Dem 452, Lactor 5 - catalytic Strategia 24

Chymotrypsin
+ Substrate Specificity
(Click to interact with Jmol model)
Chem 452, Lecture 5 - Catalytic Strategies 30

Other S	Serine	Proteases
---------	--------	-----------

+ Other Homologous Serine Proteases include **trypsin** and **elastase**

erine Proteases elastase d on Chymotrypsins chem 452, Lecture 5 - Catelytic Strategies 32

Other Serine Proteases

+ Investigating the catalytic triad by site-directed mutagenesis

Chymotrypsin	
 Covalent Catalysis Ser 195 is converted into powerful nucleophile and leads to a covalent, enzyme-bound intermediate. 	
 General Acid/Base Catalysis His 57 does both 	
 Catalysis by Approximation Binds the substrate with specificity and arranges the various players next to one another. 	
Metal Ion Catalysis Nothing here	
 Transition State Stabilization The oxyanion hole stabilizes the negatively charged, tetrahedral transition state. 	
Chem 452, Lecture 5 - Catalytic Strategies 37	

Other Proteases	
 Other strategies are used to hydrolyze peptide bonds: 	
HETALLOPROTEASES	
Chem 452, Lecture 5 - Catalytic Strategies 40	

- Carbonic Anhydrase
- EcoRV
- Myosin II ATPase