Chem 452 - Lecture 4 Enzymes Part 3

Question of the Day: What are the three major types of enzyme inhibition and how can kinetics be used to distinguish between them?

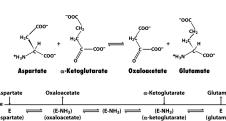
Enzyme Kinetics

- Most Reactions involve multiple substrates.
- There are three different ways that the binding substrates can occur.
 - + Ordered sequential
 - + Random sequential
- + Double displacement (Ping Pong)
- Determining the binding order can tell you something about the mechanism of the reaction.

Chem 452, Lecture 4 - Enzymes 2

Enzyme Kinetics

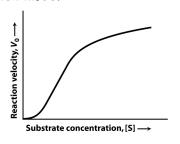
+ Ordered sequential


Chem 452, Lecture 4 - Enzymes 3

Enzyme Kinetics

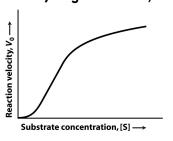
+ Random sequential

Enzyme Kinetics


+ Double displacement (Ping Pong)

Chem 452, Lecture 4 - Enzymes 5

Enzyme Kinetics


* Not all enzyme obey the Michaelis-Menten model.

Chem 452, Lecture 4 - Enzymes 6

Enzyme Kinetics

+ The behavior is often seen with allosterically regulated enzymes.

Chem 452, Lecture 4 - Enzymes 7

Enzyme Kinetics

+ The t allos1 — pH 7.4, no CO₂ — pH 7.2, no CO₂ — pH 7.2, no CO₂ — es.

Tissues Lungs

1.0

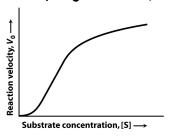
0.6

88%

0.4

77%

0.0


0.0

pO₂ (torr)

ure 4 - Enzymes 7

Enzyme Kinetics

+ The behavior is often seen with allosterically regulated enzymes.

Chem 452, Lecture 4 - Enzymes 7

Enzyme Inhibition

- * The inhibition of enzyme activity can be physiological or not.
- + It can be reversible or irreversible.
- Many drugs, pesticides and herbicides operate by inhibiting enzyme activity

Chem 452, Lecture 4 - Enzymes 8


Enzyme Inhibition

- Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Chem 452, Lecture 4 - Enzymes 9

Enzyme Inhibition

 Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.

DIPF is a powerful nerve gas toxin

- Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Chem 452, Lecture 4 - Enzymes 9

Enzyme Inhibition

- Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.
- · Catalytic groups at the active site are often

Bromoacetol phosphate is an affinity label which mimics the natural substrate for the enzyme triosephosphate isomerase

Chem 452, Lecture 4 - Enzymes 9

Enzyme Inhibition

- Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Chem 452, Lecture 4 - Enzymes 9

Enzyme Inhibition

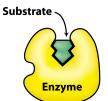
Flavin prosthetic group Suicide inhibitors of monoamine oxidase (MAC

Flavin prosthetic group Suicide inhibitors of monoamine oxidase (MAO) H₃C H₃C H₃C N,N-Dimethylpropargy H₃C C-Deprenyl H₃C N|CH₃)₂ Stably modified flavin of inactivated enzyme

Enzyme Inhibition

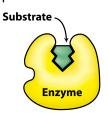
- Irreversible inhibition, while not usually physiological, can be used as a tool to study an enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Chem 452, Lecture 4 - Enzymes 9


Enzyme Inhibition

- * Reversible inhibition comes in three different forms.
- · Competitive
- Noncompetitive
- · Uncompetitive
- + Enzyme kinetics can be used to distinguish between these.

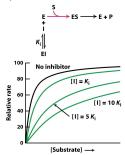
Chem 452, Lecture 4 - Enzymes 10


Enzyme Inhibition

+ Competitive Inhibition

Competitive inhibitor Enzyme

+ Competitive Inhibition

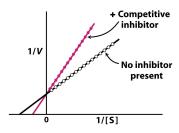


Competitive inhibitor Enzyme

Chem 452, Lecture 4 - Enzymes 12

Enzyme Inhibition

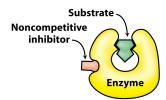
+ Competitive Inhibition

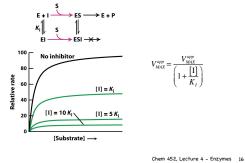


 $K_{M}^{app} = K_{M} \left(1 + \frac{\text{[I]}}{K_{I}} \right)$

Chem 452, Lecture 4 - Enzymes 13

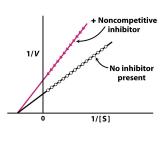
Enzyme Inhibition


+ Competitive Inhibition


Chem 452, Lecture 4 - Enzymes 14

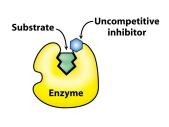
Enzyme Inhibition

+ Noncompetitive Inhibition



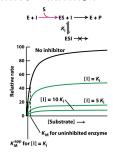
+ Noncompetitive Inhibition

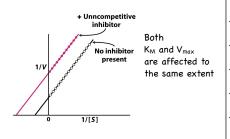
Enzyme Inhibition


+ Noncompetitive Inhibition

Chem 452, Lecture 4 - Enzymes 17

Enzyme Inhibition


+ Uncompetitive Inhibition


Chem 452, Lecture 4 - Enzymes 18

Enzyme Inhibition

+ Uncompetitive Inhibition

+ Uncompetitive Inhibition

Chem 452, Lecture 4 - Enzymes 20

Problem

C) Ibuprofen is an inhibitor of the enzyme prostaglandin endoperoxide synthase. By inhibiting the synthesis of prostaglandins, ibuprofen reduces both inflammation and pain. Using the data below, determine the type of inhibition that ibuprofen exerts on prostaglandin endoperoxide synthase

[S] {mM}	v₀ {mM/min}	v₀ (mM/min) /w Ibuprofen
0.5	23.5	16.67
1	32.2	25.25
1.5	36.9	30.49
2.5	41.8	37.04
3.5	44	38.91

Enzyme Inhibition

 Some inhibitors are transition state analogues instead of substrate analogues.

уrrole 2-carboxylic acid

Chem 452, Lecture 4 - Enzymes 22

Thermodynamics

"I think that enzymes are molecules that are complementary in structure to the activated complexes of the reactions that they catalyze, that is, to the molecular configuration that is intermediate between the reacting substance and the products of reaction for these catalyzed processes. the attraction of the enzyme molecule for the activated complex would thus lead to a decrease in its energy and hence to the decrease in the energy of activation of the reaction and to the increase in the rate of the reaction."

- Linus Pauling (Nature 161 (1948):707-709)

Synthetic Enzymes

- + Antibody enzymes (Abzymes)
 - Antibodies raised to transitions state analogues exhibit enzymatic activity

Antibodies raised to this compound have $\underline{\text{ferrochelatase}}$ activity (*2,500 x the uncatalyzed reaction)

Chem 452, Lecture 4 - Enzymes 2

Enzyme Classification

 Enzymes are classified based on the types of reactions they catalyze

TABLE 8.8 Six major classes of enzymes

Class	Type of reaction	Example	Chapter
1. Oxidoreductases	Oxidation-reduction	Lactate dehydrogenase	16
2. Transferases	Group transfer	Nucleoside monophosphate kinase (NMP kinase)	9
3. Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	Chymotrypsin	9
4. Lyases	Addition or removal of groups to form double bonds	Fumarase	17
5. Isomerases	Isomerization (intramolecular group transfer)	Triose phosphate isomerase	16
6. Ligases	Ligation of two substrates at the expense of ATP hydrolysis	Aminoacyl-tRNA synthetase	30

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) $\,$

http://www.chem.qmul.ac.uk/iubmb/enzyme/

Chem 452, Lecture 4 - Enzymes 25

Next up

- + Catalytic Strategies (Chapter 9)
- Protease reaction (Hydrolysis rxn)
- · Carbonic anhydrase (Hydration rxn)
- · Restriction endonuclease (Hydrolysis rxn)
- Myosin ATPase