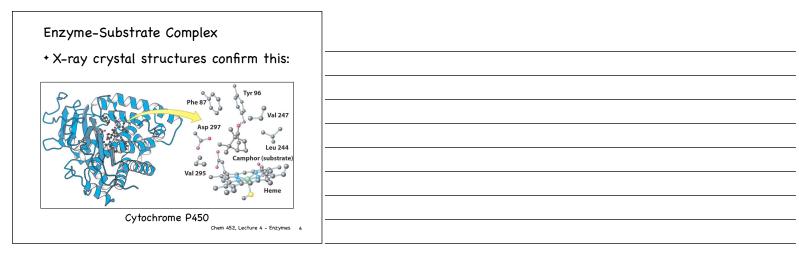
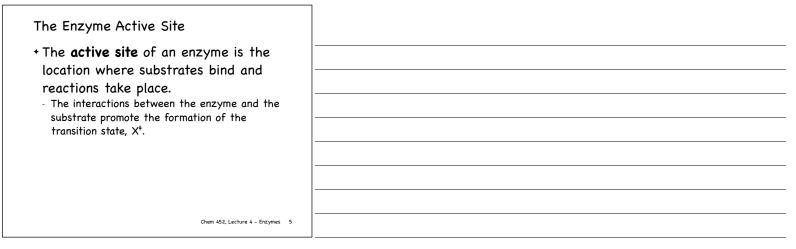
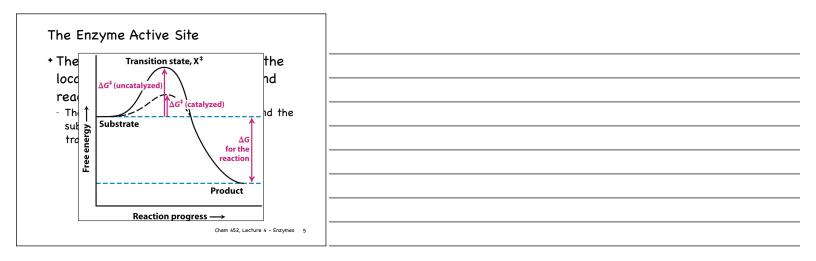
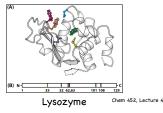

Chem 452 – Lecture 4 Enzymes Part 2


Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour?

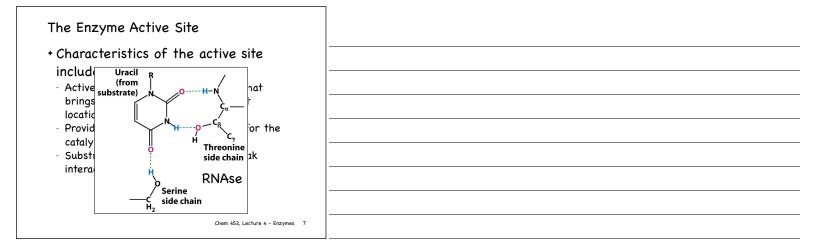

Thermodynamics
"I think that enzymes are molecules that are complementary in structure to the activated complexes of the reactions that they catalyze, that
is, to the molecular configuration that is intermediate between the reacting substance and the products of reaction for these catalyzed
processes. the attraction of the enzyme molecule for the activated complex would thus lead to a decrease in its energy and hence to the decrease in the energy of activation of the reaction and to the
increase in the rate of the reaction."
– Linus Pauling (Nature 161 (1948):707–709)
Chem 452, Lecture 4 - Enzymes 2

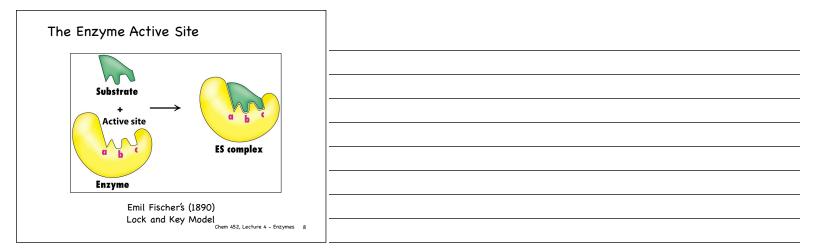

Enzyme-Substrate Complex	
 The reaction rate profile, as a function of substrate concentration, provides evidence for the formation of an enzyme-substrate complex. 	
Chem 452, Lecture 4 – Enzymes 3	

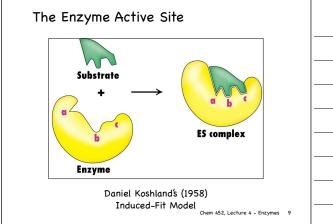


The Enzyme Active Site

- + Characteristics of the active site include:
 - Active site is 3-dimensional crevice that brings together residues from distant locations on the polypeptide chain

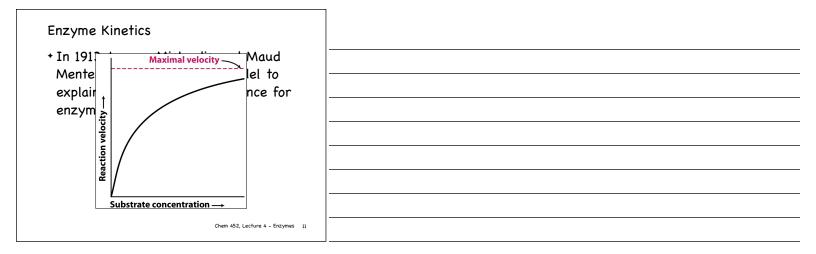



- Active site is 3-dimensional crevice that brings together residues from distant locations on the polypeptide chain
- Provides a unique microenvironment for the catalytic groups and the substrate.


Chem 452, Lecture 4 - Enzymes 7

The Enzyme Active Site

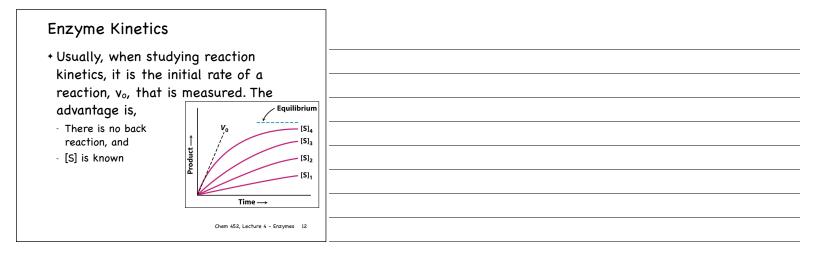
- + Characteristics of the active site include:
- Active site is 3-dimensional crevice that brings together residues from distant locations on the polypeptide chain
- Provides a unique microenvironment for the catalytic groups and the substrate.
- Substrates are bound by multiple weak interactions.

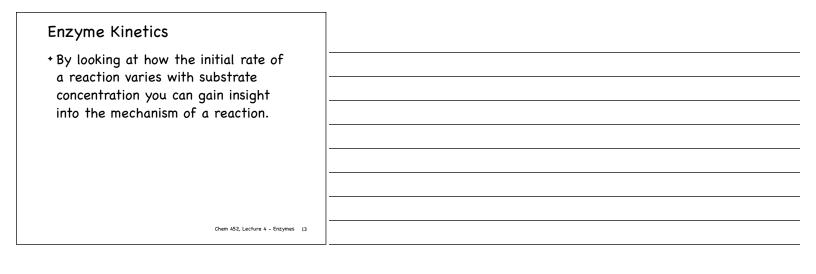


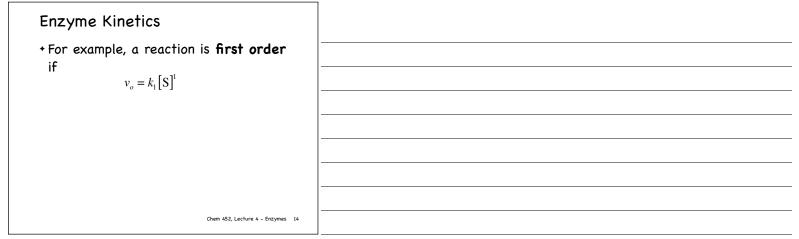
The Enzyme Active Site • Enzyme bind preferentially to the transition state • There by lowering ΔG* Image: Determined of the transition state Image: Determined of the transity of the transition state

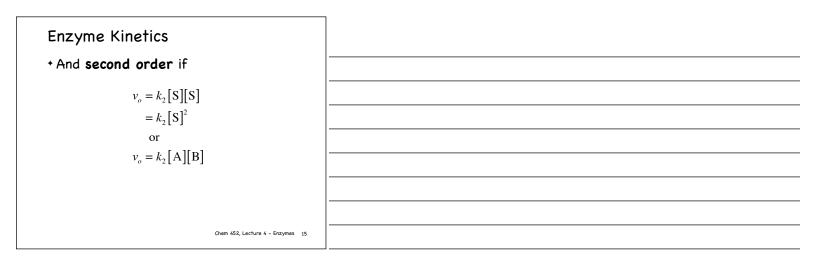
Enzyme Kinetics

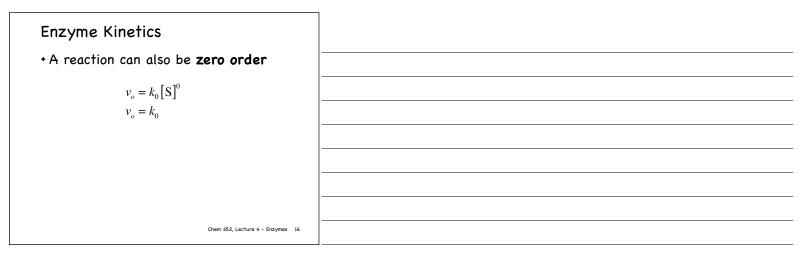
 In 1913, Leonor Michaelis and Maud Menten proposed a simple model to explain the substrate dependence for enzyme catalyzed reactions.

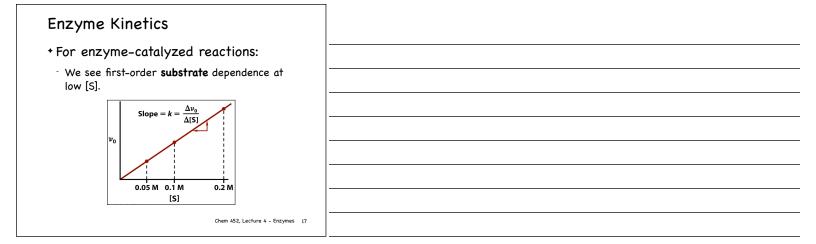

11	

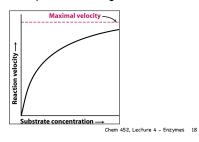


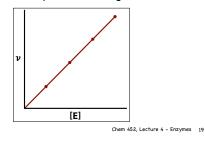

 In 1913, Leonor Michaelis and Maud Menten proposed a simple model to explain the substrate dependence for enzyme catalyzed reactions.


Chem 452, Lecture 4 - Enzymes 11


Enzyme Kinetics • Usually, when studying reaction kinetics, it is the initial rate of a reaction, vo, that is measured. The advantage is, • There is no back reaction, and • [S] is known







- + For enzyme-catalyzed reactions:
 - And we see zero-order **substrate** concentration dependence at high [S].

Enzyme Kinetics

- + For enzyme-catalyzed reactions:
- We also see a first-order enzyme concentration dependence at high [S].

Enzyme Kinetics

- Michaelis and Menten put this all together to come up with their
 - Michaelis-Menten model for enzyme catalyzed reactions.

Maud Menten Leonor Michae (1879–1960) (1875–1949)

 Proposed the following mechanism for an enzyme catalyzed reaction:

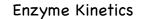
$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

- The overall rate of the reaction is therefore determined by the conversion of enzyme-substrate complex, ES, to product:

 $v_o = k_2 [ES]$

Came up with an expression for [ES] as a function of [S]
 Substitution in the the above expression for ν_o will then give ν_o as a function of [S].

Chem 452, Lecture 4 - Enzymes 21


Enzyme Kinetics

$$E + S \xleftarrow{k_{1}}{k_{1}} ES \xleftarrow{k_{2}}{E} + P$$
• Proposed that the concentration of ES quickly reaches a
steady state, in which the rate at which ES is formed

$$(=k_{1}[ES] + k_{2}[ES])$$

$$k_{-1}[ES] + k_{2}[ES] = k_{1}[E][S]$$
• Solving for [ES] gives:

$$[ES] = \frac{k_{1}[E][S]}{k_{-1} + k_{2}}$$
Chen 452, Letture 4 - Enzymes 22

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

- The rate constants are combined to produce a single constant, $K_{\text{M}},$ called the Michaelis-Menten constant.

$$K_{M} = \frac{k_{-1} + k_{2}}{k_{1}}$$

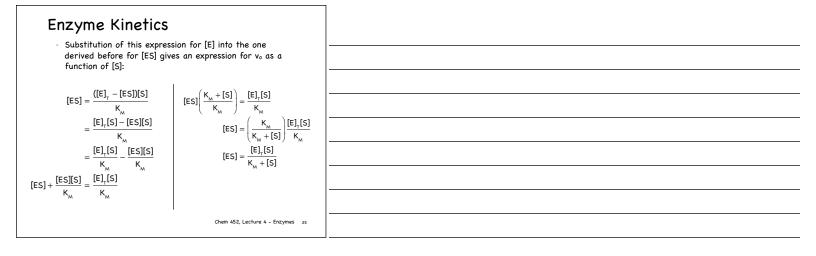
- Therefore the expression for [ES] becomes

$$[ES] = \frac{[E][S]}{K_{_{M}}}$$

Chem 452, Lecture 4 - Enzymes 23

Enzyme Kinetics

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$


 • Before this expression for [ES] can be substituted in the expression for v_o, the variable [E] needs to be eliminated.

 $[ES] = \frac{[E][S]}{K_M}$

 • [E] is the free enzyme concentration, which is equal to the total enzyme concentration, [E]_T minus the enzyme-substrate concentration

 $[E] = [E]_T - [ES]$

E + P
substituted in the ls to be eliminated.
which is equal to minus the enzymeChem 452, Lecture 4 - Enzymes 24

Enzyme Kinetics • Substitution of this expression for [ES] into the one for v_o gives us the Michaelis-Menton equation: $v_o = k_2[ES]$ $v_o = \frac{k_2[E]_T[S]}{K_M + [S]}$ • At very high substrate concentration ([S] >> K_M), $v_o = k_2[E]_T$ (as [S] becomes large) • Which is a constant equal to the maximum velocity, V_{max} $V_{max} = k_2[E]_T$, $v_o = \frac{V_{max}[S]}{K_M + [S]}$

Chem 452, Lecture 4 - Enzymes 26

Enzyme Kinetics

- The meaning of the catalytic rate constant, k_{cat} (= k₂).
 - Represented by the first order rate constant at high [S]
 - Is determined from Vmax (kcat = Vmax/[E]total)
- Has units of frequency and represents the number of catalytic cycles an enzyme can carry out per unit time when fully saturated. with substrate.
- Also called the turnover number

BLE 8.5 Turnover nur	nbers of some enzymes				
nzyme	Turnover number (per second)	_	 	 	
rbonic anhydrase	600,000				
Ketosteroid somerase	280,000				
etylcholinesterase	25,000				
enicillinase	2,000				
ctate	1,000	per			
lehydrogenase		[
nymotrypsin	100				
NA polymerase I	15				
yptophan synthetase	2				
sozyme	0.5				

Enzyme Kinetics	
 The meaning of the catalytic rate constant, k_{cat} (= k₂). 	
 Represented by the first order rate constant at high [S] 	
 Is determined from Vmax (kcat = Vmax/[E]total) 	
- Has units of frequency and represents the number of catalytic cycles an enzyme can carry out per	
unit time when fully saturated. with substrate. - Also called the turnover number	
Chem 452, Lecture 4 - Enzymes 27	

+ The meaning of K_{M} .

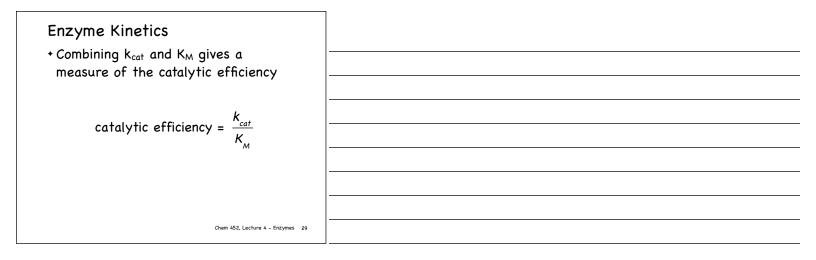
- When $k_2 \ll k_{-1}$, K_M is equal to the dissociation constant for the enzyme-substrate complex

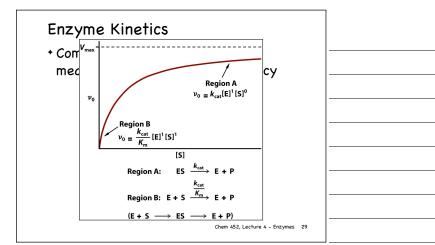
 $\mathsf{K}_{\mathsf{d}} = \frac{\mathsf{k}_{-1}}{\mathsf{k}_{1}} \approx \mathsf{K}_{\mathsf{M}}$ ES $\frac{k_{-1}}{k_1}$ E + S

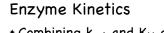
- + Small $K_{\mbox{\scriptsize M}}$ indicates strong binding of the substrate to enzyme
- + Large $K_{\mbox{\scriptsize M}}$ indicate weak binding of substrate to enzyme.

Chem 452, Lecture 4 - Enzymes 28

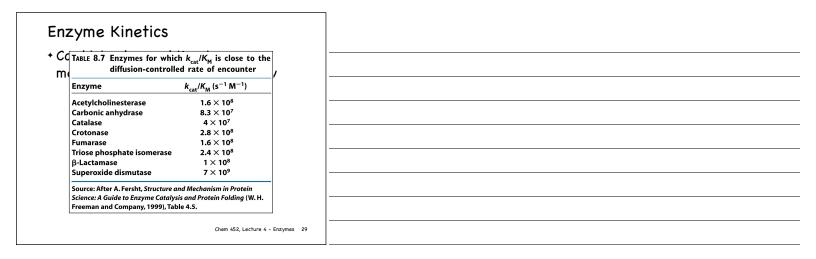
nzyme Kinet The meaning o	of K _M .		
TABLE 8.4 K _M values of som			
Inzyme	Substrate	<i>К_М</i> (μМ)	
Chymotrypsin .ysozyme 3-Galactosidase	Acetyl-L-tryptophanamide Hexa-N-acetylglucosamine Lactose	5000 6 4000	
Threonine deaminase Carbonic anhydrase Penicillinase	Threonine CO ₂ Benzylpenicillin	5000 8000 50	
Pyruvate carboxylase	Pyruvate HCO₃¯ ATP	400 1000 60	
Arginine-tRNA synthetase	Arginine tRNA ATP	3 0.4 300	

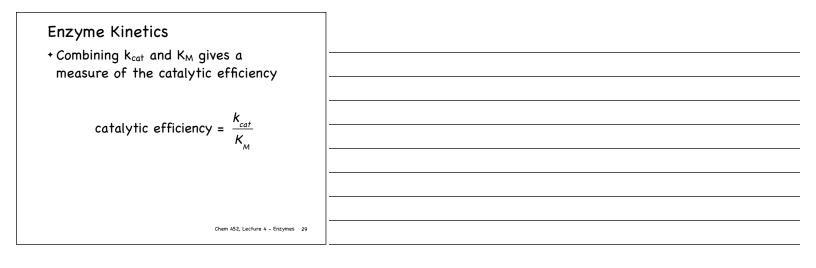

Enzyme Kinetics


+ The meaning of K_{M} .


- When $k_2 \ll k_{-1}$, K_M is equal to the dissociation constant for the enzyme-substrate complex

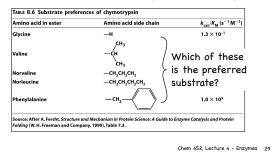
- + Small $K_{\mbox{\scriptsize M}}$ indicates strong binding of the substrate to enzyme
- + Large K_M indicate weak binding of substrate to enzyme.





+ Combining k_{cat} and K_M gives a measure of the catalytic efficiency

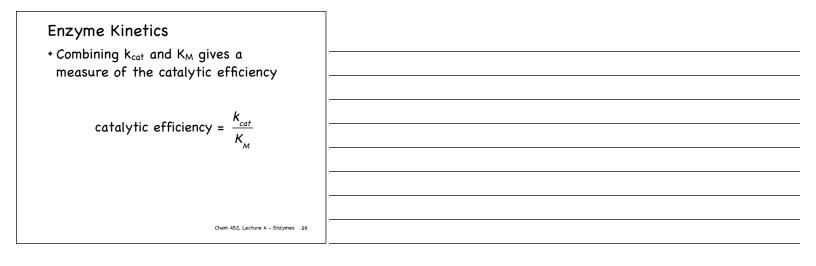
catalytic efficiency =
$$\frac{k_{cat}}{K_{_M}}$$



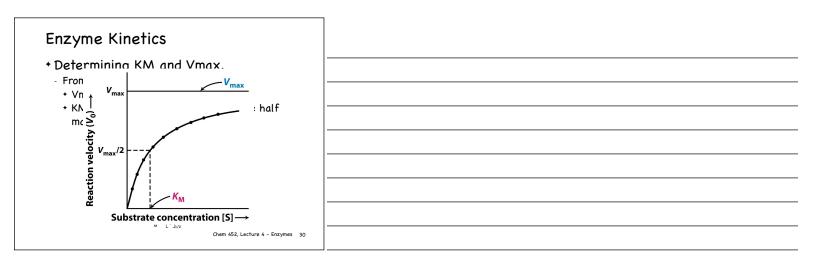
E nzyme K Combining	k _{cat} and K _M giv	es a			
measure o	of the catalytic	efficiency			
ABLE 8.6 Substrate prefere	ences of chymotrypsin				
Amino acid in ester	Amino acid side chain	$k_{\rm cat}/K_{\rm M}~({\rm s}^{-1}~{\rm M}^{-1})$			
ilycine	—н	1.3 × 10 ⁻¹			
/aline	-сн сн ₃	2.0			
lorvaline	-CH2CH2CH3	$3.6 imes10^2$			
lorleucine	-CH2CH2CH2CH3	$3.0 imes 10^3$			
Phenylalanine	-CH2-	1.0 × 10 ⁵			
ource: After A. Fersht, Structure o olding (W. H. Freeman and Comp	and Mechanism in Protein Science: A Guide to En Jany, 1999), Table 7.3.	zyme Catalysis and Protein			

Enzyme	Kinetics
--------	----------

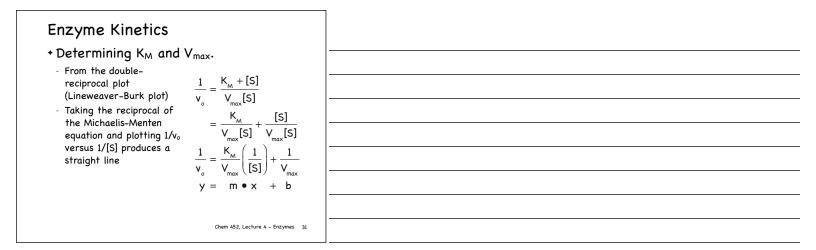

+ Combining k_{cat} and K_M gives a measure of the catalytic efficiency

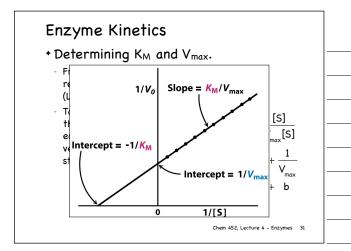


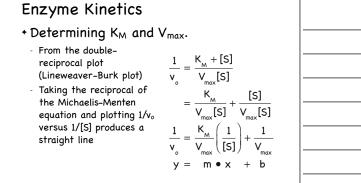
Enzyme Kinetics


+ Combining k_{cat} and K_M gives a measure of the catalytic efficiency

Amino acid in ester	Amino acid side chain	$k_{\rm cat}/K_{\rm M}$ (s ⁻¹ M ⁻¹)
Glycine	—н	$1.3 imes10^{-1}$
Valine		2.0
Norvaline	СH,СН,СН,	$3.6 imes10^2$
Norleucine	-ch2ch2ch2ch3	$3.0 imes10^3$
Phenylalanine	CH2	$1.0 imes 10^5$
Source: After A. Fersht, Structure Folding (W. H. Freeman and Com	and Mechanism in Protein Science: A Guide to En pany, 1999), Table 7.3.	zyme Catalysis and Protein







Enzyme Kinetics	
 Determining KM and Vmax. From the vo versus [S] plot 	
 Vmax is the maximum vo at high [S] KM is the [S] value when vo is at the half maximum, vo = Vmax/2 	
when $v_{e} = \frac{V_{max}}{2}$, $[S] = [S]_{1/2}$	
$\frac{V_{max}}{2} = \frac{V_{max}[s]_{1/2}}{K_{max} + [s]_{1/2}}$	
$\frac{1}{2} = \frac{\left[\frac{s}{s}\right]_{1/2}}{\kappa_{x} + \left[\frac{s}{s}\right]_{1/2}}$	
$\begin{aligned} \kappa_{M} + \begin{bmatrix} S \end{bmatrix}_{1/2} & 2 \begin{bmatrix} S \end{bmatrix}_{1/2} \\ \kappa_{M} & = \begin{bmatrix} S \end{bmatrix}_{1/2} \end{aligned}$	
$m_{M} = \lfloor \nabla \rfloor_{1/2}$ Chem 452, Lecture 4 - Enzymes 30	

+ Summary:

V_{max}

- It is the velocity observed when an enzyme is fully saturated with substrate at high [S]
- Is the maximum velocity in the Michaelis-Menten plot.
- It can be determined from the y-intercept in a Lineweaver-Burk plot (y-intercept = $1/V_{max}$).

Chem 452, Lecture 4 - Enzymes 32

Enzyme Kinetics	
+ Summary:	
K _M	
 It is a measure of how strongly an enzyme is able to bind to the substrate. 	
${\boldsymbol{\star}}$ The higher the K_M the weaker the binding	
 It is equal to the substrate concentration that produces a half-maximum velocity (v_o = V_{max}/2) in the Michaelis-Menten plot. 	
 It can be determined either by dividing the slope by intercept from the Lineweaver-Burk Plot, orfrom the x-intercept in a Lineweaver-Burk plot (x-intercept = 	
-1/K _M).	
Chem 452, Lecture 4 - Enzymes 33	

+ Summary:

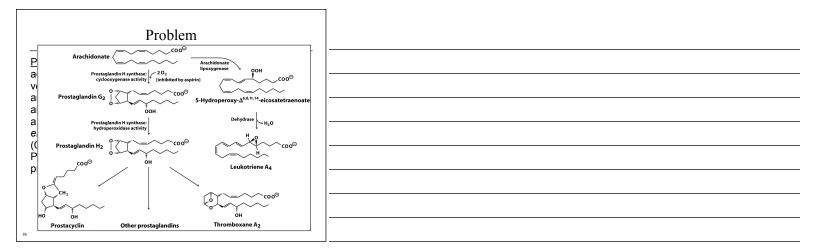
kcat

- It is the catalytic rate constant (k_2).
- It is also called the turnover number and tells how often each enzyme molecule converts a substrate to product per unit of time.
- It can be determined from V_{max} and the total enzyme concentration [E]_T ($k_{cat} = V_{max}/[E]_T$).

Chem 452, Lecture 4 - Enzymes 34

Enzyme Kinetics

+ Summary:


k_{cat}/K_M

- It is a measure of the catalytic efficiency for an enzyme and incorporates both how readily an enzyme binds its substrate to form the enzyme-substrate complex $(1/K_M)$, and once formed, how readily it converts it to product (k_{cat}).

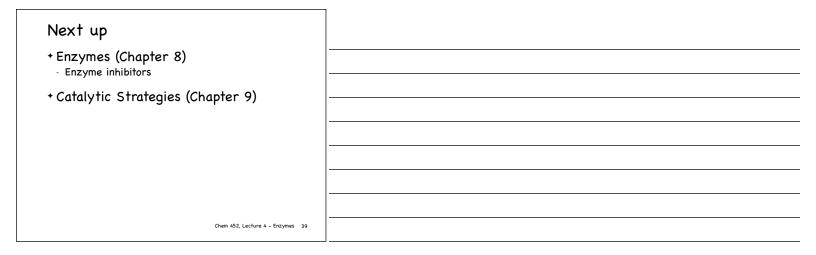
Chem 452, Lecture 4 - Enzymes 35

Problem

<u>Prostaglandins</u> are a class of eicosanoid (20-carbon), fatty acid derivatives with a variety of extremely potent actions on vertebrate tissues. They are responsible for producing fever and inflammation and the associated pain. Prostaglandins are derived from the 20-carbon fatty acid, arachidonic acid, in a reaction catalyzed by the enzyme *prostaglandin endoperoxide synthetase*. This enzyme is a cycoloxygenase (COX) and uses dioxygen (O₂) to convert arachidonic acid to PGG₂, the immediate precursor to many different prostaglandins.

Problem

<u>Prostaglandins</u> are a class of eicosanoid (20-carbon), fatty acid derivatives with a variety of extremely potent actions on vertebrate tissues. They are responsible for producing fever and inflammation and the associated pain. Prostaglandins are derived from the 20-carbon fatty acid, arachidonic acid, in a reaction catalyzed by the enzyme *prostaglandin endoperoxide synthetase*. This enzyme is a cycoloxygenase (COX) and uses dioxygen (O₂) to convert arachidonic acid to PGG₂, the immediate precursor to many different prostaglandins.


Problem	Pro	blem
---------	-----	------

A) The kinetic data given below are for the reaction catalyzed by *prostaglandin endoperoxide synthetase*. Determine the V_{max} and K_M of the enzyme.

v₀ {mM/min}		
23.5		
32.2		
36.9		
41.8		
44		

B) If the enzyme concentration used in this reaction is 14 nM, what is the **turnover number** for this reaction?

