Chem 452 – Lecture 4 Enzymes Part 1

Question of the Day: Enzymes are biological catalysts. Based on your general understanding of catalysts, what does this statement imply about enzymes?

T 1 1 1
Introduction
Enzymes are very good at what they do:
 As highly effective catalysts;
 They greatly enhance the rates of reactions.
 They can be incredibly selective.
 Important themes we will examine;
 Thermodynamics of enzyme catalyzed reactions
 Catalysis by transition state stabilization
 The Michaelis-Menten Model for an enyzme catalyzed reaction
 The regulation of enzyme activity
Chem 452, Lecture 4 - Enzymes 2

Enzymes are Powerful and Highly Selective

- + Example: Hydration of CO₂
- + Carbonic anhydrase increases the rate 8 million-fold.
- Each Carbonic anhydrase molecule catalyzes 1 million reactions per second!

-	

+ Each 1 mill	Carbor	nic anl ctions	hydrase mo s per second	lecule cata d!	o lyzes
TABLE 8.1 Rate enhand	cement by se Nonenzy half-l	lected en: matic ife	Uncatalyzed rate (k _{un} s ⁻¹)	Catalyzed rate (k _{cat} s ⁻¹)	Rate enhancement (k _{cat} s ⁻¹ /k _{un} s ⁻¹)
Enzyme				20	1.4 × 10 ¹⁷
OMP decarboxylase	78,000,000	years	2.8×10^{-16}	39	11474 10
OMP decarboxylase Staphylococcal nuclease	78,000,000 130,000	years years	2.8 × 10 ⁻¹⁶ 1.7 × 10 ⁻¹³	95	5.6 × 10 ¹⁴
OMP decarboxylase Staphylococcal nuclease AMP nucleosidase Carboxynentidase A	78,000,000 130,000 69,000 7 3	years years years	2.8 × 10 ⁻¹⁶ 1.7 × 10 ⁻¹³ 1.0 × 10 ⁻¹¹ 3.0 × 10 ⁻⁹	95 60 578	5.6 × 10 ¹⁴ 6.0 × 10 ¹² 1.9 × 10 ¹¹
OMP decarboxylase Staphylococcal nuclease AMP nucleosidase Carboxypeptidase A Ketosteroid isomerase	78,000,000 130,000 69,000 7.3 7	years years years years weeks	2.8 × 10 ⁻¹⁶ 1.7 × 10 ⁻¹³ 1.0 × 10 ⁻¹¹ 3.0 × 10 ⁻⁹ 1.7 × 10 ⁻⁷	95 60 578 66.000	5.6 × 10 ¹⁴ 6.0 × 10 ¹² 1.9 × 10 ¹¹ 3.9 × 10 ¹¹
OMP decarboxylase Staphylococcal nuclease AMP nucleosidase Carboxypeptidase A Ketosteroid isomerase Triose phosphate isomerase	78,000,000 130,000 69,000 7.3 7 1.9	years years years years weeks days	2.8×10^{-16} 1.7×10^{-13} 1.0×10^{-11} 3.0×10^{-9} 1.7×10^{-7} 4.3×10^{-6}	95 60 578 66,000 4,300	5.6 × 10 ¹⁴ 6.0 × 10 ¹² 1.9 × 10 ¹¹ 3.9 × 10 ¹¹ 1.0 × 10 ⁹
OMP decarboxylase Staphylococcal nuclease AMP nucleosidase Carboxypeptidase A Ketosteroid isomerase Triose phosphate isomerase Chorismate mutase	78,000,000 130,000 69,000 7.3 7 1.9 7.4	years years years years weeks days hours	$\begin{array}{c} 2.8 \times 10^{-16} \\ 1.7 \times 10^{-13} \\ 1.0 \times 10^{-13} \\ 3.0 \times 10^{-9} \\ 1.7 \times 10^{-7} \\ 4.3 \times 10^{-6} \\ 2.6 \times 10^{-5} \end{array}$	95 60 578 66,000 4,300 50	5.6×10^{14} 6.0×10^{12} 1.9×10^{11} 3.9×10^{11} 1.0×10^{9} 1.9×10^{6}
OMP decarboxylase Staphylococcal nuclease AMP nucleosidase Carboxypeptidase A Ketosteroid isomerase Triose phosphate isomerase Chorismate mutase Carbonic anhydrase	78,000,000 130,000 69,000 7.3 7 1.9 7.4 5	years years years years weeks days hours seconds	2.8 × 10 ⁻¹³ 1.7 × 10 ⁻¹³ 1.0 × 10 ⁻¹¹ 3.0 × 10 ⁻⁹ 1.7 × 10 ⁻⁷ 4.3 × 10 ⁻⁶ 2.6 × 10 ⁻⁵ 1.3 × 10 ⁻¹	95 60 578 66,000 4,300 50 1 × 10 ⁶	5.6 × 10 ¹⁴ 6.0 × 10 ¹² 1.9 × 10 ¹¹ 3.9 × 10 ¹¹ 1.0 × 10 ⁹ 1.9 × 10 ⁶ 7.7 × 10 ⁶

Powerful and Highly Selective Catalysts • Enzymes can be very selective • In the types of reactions they catalyze • In the reactants (substrates) they accept • In the products they form

Powerful and Highly Selective Catalysts

- + Enzymes can be very selective
 - + Substrate specificity
 - + Papain
 - + L-amino acids + Trypsin
 - + L-Arg & L-Lys
 - + Thrombin
 - + L-Arg-Gly

Powerful and Highly Selective Catalysts	
 Enzymes sometimes need help Cofactors Metal ions Coenzymes (Organic molecules) 	
apoenzyme + cofactor = holoenzyme	
Chem 452, Lecture 4 - Enzymes 7	

T.	ABLE 8.2 Enzyme cofactors		7
Enza	ofactor	Enzyme	
+ Cc Coenzyme Thiamine p Flavin adel Nicotinami Pyridozal Coenzyme Biotin 5'-Deoxyan Tetrahydro	senzyme hiamine prochosphate avin adenine nucleotide icotinamide adenine dinucleotide yridoxal phosphate oenzyme A (CoA) iotin '-Deoxyadenosyl cobalamin etrahydrofolate	Pyruvate dehydrogenase Monoamine oxidase Lactate dehydrogenase Glycogen phosphorylase Acetyl CoA carboxylase Pyruvate carboxylase Methylmalonyl mutase Thymidylate synthase	ne
Nz	n ²⁺ Do any of the	names of the name	mes of
z	n ²⁺ these coenzym	nes look familiar t	to you?
N		Hexokinase Urease	
N	lo	Nitrate reductase	
S	e In	Glutathione peroxidase Superoxide dismutase	
	+	Bronionyl CoA carboyylaco	

E 8.2 Enzyme cofactors]			
actor	Enzyme				
tzyme mine pyrophosphate in adenine nucleotide doxal phosphate uzyme A (CoA) in eoxyadenosyl cobalamin shydrofolate	Pyruvate dehydrogenase Monoamine oxidase Lactate dehydrogenase Glycogen phosphorylase Acetyl CoA carboxylase Pyruvate carboxylase Methylmalonyl mutase Thymidylate synthase	ne			
	Carbonic anhydrase Carboxypeptidase EcoRV Hexokinase Urease Nitrate reductase Glutathione peroxidase Superoxide dismutase Propionyl CoA carboxylase				

Thermodynamics	
The cardinal rules for a chemical reaction, aA + bB = cD +dD:	
+ A reaction occurs spontaneously only if	
$\Delta G < 0$ (exergonic reactions)	
$aA + bB \rightarrow cD + dD$	
Chem 452, Lecture 4 - Enzymes 8	

Thermodynamics

The c	ardinal	rules	for a	ı chemical
reacti	ion, aA	+ bB =	= cD	+dD:

+ A reaction is at equilibrium if $\Delta {\tt G}$ = 0 aA + bB \leftrightarrow cC+ dD

Thermodynamics	
The cardinal rules for a chemical reaction, $aA + bB = cD + dD$	
+ A reaction is non-spontaneous if ΔG > 0	
(endergonic reactions) aA + bB ← cC+ dD	
* An input in free energy is required to make	
non-spontaneous reactions spontaneous.	
Chem 452, Lecture 4 - Enzymes 10	

Thermodynamics	
The cardinal rules for a chemical reaction, aA + bB = cD +dD:	
+ $\Delta { m G}$ depends only on the initial (A + B) and	
final states (C + D) of a reaction, not on the pathway used to get from A + B to C + D.	
Chem 452, Lecture 4 - Enzymes 11	

Thermodynamics	
The cardinal rules for a chemical reaction $aA + bB = cD + dD$	
+ $\Delta {\sf G}$ provides no information about the the	
rate of a reaction, it only indicates which way a reaction will proceed spontaneously	
Chem 452, Lecture 4 - Enzymes 12	

Thermodynamics	The	rmod	lynai	nics
----------------	-----	------	-------	------

+ The free energy change for a reaction, $\Delta \, {\rm G},$ is related to the

concentrations of the products and the reactants:

 $\Delta G = \Delta G^{o} + RT \ln \left(\frac{[\mathbf{C}]^{c} [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}} \right)$

where $\Delta G^{\scriptscriptstyle o}$ is the standard free energy change

Thermodynamics	
+ The standard free energy change for a reaction, $\Delta {\rm G}^\circ,$ is the free energy	
change for a reaction carried out under standard conditions	
+ For solutions, [A] = [B] = [C] = [D] = 1 M	
+ For the solvent, $[H_2O] = 1$	
+ For gases, pA = 1 atm	
+ T = 25°C	
Chem 452, Lecture 4 – Enzymes 14	

Thermodynamics

+ Δ G'" is related to the equilibrium

constant for a reaction. $\Delta G' = 0$ (at equilibrium)

$$0 = \Delta G^{\circ \prime} + RT \ln \left(\frac{[\mathbf{C}]^{c} [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}} \right)_{eq}$$
$$\Delta G^{\circ \prime} = -RT \ln \left(\frac{[\mathbf{C}]^{c} [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}} \right)_{eq}$$
$$= -RT \ln \left(K_{eq}^{\cdot} \right)$$

Problem	
Calculate the standard free energy change, $\Delta G^{\circ\prime}$, for the following reaction from its equilibrium constant, K' _{eq} :	
aspartate aminotransferase glutamate + oxaloacetate \rightarrow aspartate+ $lpha$ -ketoglutarte	
K' _{eq} = 6.8	
18	

Problem	
Calculate the equilibrium constant, K' $_{\rm eq}$, for the following reaction from its standard free energy change, $\Delta {\tt G}^{\rm e\prime}$:	
glucose 6-phosphatase glucose 6-phosphate + H ₂ O glucose + P _i	
∆G°' = -13.8 kJ/mol	
19	

Thermodynamics	
+ Enzymes (as catalysts) affect only the rate of a reaction, not the Δ G.	
+ Enzyme ↑ U No enzyme	
Produ	
Seconds Hours Time →	
Chem 452, Lecture 4 - Enzymes 21	

Thermodynamics and Enzymes • Enzymes, as catalysts, have no effect on the thermodynamics of a reaction.	
Chem 452, Lecture 4 - Enzymes 22	

- + Enzymes, as catalysts, affect only the rate of a reaction, not the $\Delta {\rm G}.$
 - + Consequently, an affects they have on the kinetics of a reaction must must be equal in both the forward and back reactions:

 $Rate_{torward} = k_{j}[S] \quad S \leftrightarrow P$ $Rate_{back} = k_{b}[P]$

 $\begin{array}{l} (\lfloor \mathbf{S}_{J} \, _{eq} & .. \end{array} \\ K_{eq} = \frac{k_f}{k_b} \\ \\ \text{Chem 452, Lecture 4 - Enzymes} \quad \mathbf{23} \end{array}$

at equilibrium $Rate_{forward} = Rate_{back}$

 $k_f[\mathbf{S}] = k_b[\mathbf{P}]$ $\left(\frac{[\mathbf{P}]}{[\mathbf{S}]}\right)_{eq} = \frac{k_f}{k_b}$

Enzymes and Kinetics

- Enzymes accelerate the rates of reactions by stabilizing the transition state in a reaction
- * The **transition state** lies between the substrate and products of a reaction.

 $\mathsf{S}\,\leftrightarrow\,\mathsf{X^{\ddagger}}\to\mathsf{P}$

Thermodynamics	
 Enzymes accelerate the rates of reactions by stabilizing the transition 	
state $S \rightleftharpoons^{\kappa^{\ddagger}} X^{\ddagger} \xrightarrow{k} P$	
$\Delta G^{\ddagger} = G_{_{X^{\ddagger}}} - G_{_S}$ activation free energy	
$V \propto \left[\mathbf{X}^{\ddagger} \right]$	
$V = k \left[\mathbf{X}^{\sharp} \right] = \frac{kT}{h} \left[\mathbf{S} \right] e^{-\Delta G^{\sharp} / RT}$	
+ Enzyme speed up reactions by lowering $\Delta {\sf G}$ ‡,	
the activation free energy.	
Chem 452, Lecture 4 - Enzymes 25	

Thermodynamics

"I think that enzymes are molecules that are complementary in structure to the activated complexes of the reactions that they catalyze, that is, to the molecular configuration that is intermediate between the reacting substance and the products of reaction for these catalyzed processes. The attraction of the enzyme molecule for the activated complex would thus lead to a decrease in its energy and hence to the decrease in the energy of activation of the reaction and to the increase in the rate of the reaction."

- Linus Pauling (Nature 161 (1948):707-709)

Next up
 Enzymes (Chapter 8) Michaelis-Menten model for enzyme catalzyed
Chem 452, Lecture 4 - Enzymes 28