Chem 452 - Lecture 1 Introduction to Biochemistry 110914

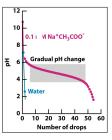
Even though biology presents to us an amazing diversity of life forms, there is an underlying uniformity that connects these forms at the cellular and molecular levels. Biochemistry embodies this uniformity. In this lecture we will examine the relationship between form and function at the molecular level and will look at how chemical and physical principles can be applied to biological molecules.

Acid and Base Chemistry

- Biological systems are typically 70% water.
- + Self ionization of water
- + Addition of acids and bases to water
- + Arrhenius acids and bases
- + Brønsted-Lowry acids and bases
- + Buffers
 - + Henderson-Hasselbalch Equation

Chem 452, Lecture 1 - Introduction to Biochemistry 2

Problem

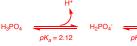

What is the pH of a 0.1 M solution of HCI?

Problem 1.7

What is the pH of a 0.1 M solution of acetic acid $(pK_a = 4.75)$?

Acid and Base Chemistry

- + Buffers
- A mixture of a weak acid and its conjugate base
- + Henderson-Hasselbalch Equation

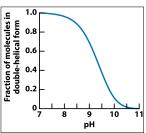


Adding 1M HCl to water and to a solution of 0.1M sodium acetate

Chem 452, Lecture 1 - Introduction to Biochemistry 5

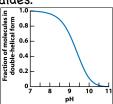
Acid and Base Chemistry

- + Buffers
- + Henderson-Hasselbalch Equation
- + Phosphate buffers


Chem 452, Lecture 1 - Introduction to Biochemistry 6

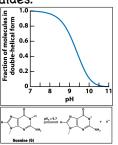
Problem 1.14

For an acid, HA, the concentrations of HA and A $^-$ at pH 6.0 are 0.075 and 0.025, respectively. What is the pK_a value for the acid?


Acid and Base Chemistry

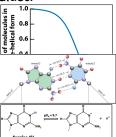
+ Double-stranded DNA denatures at high pH values.

Acid and Base Chemistry


+ Double-stranded DNA denatures at high pH values.

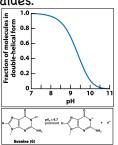
Chem 452, Lecture 1 - Introduction to Biochemistry 9

Acid and Base Chemistry


+ Double-stranded DNA denatures at high pH values.

Chem 452, Lecture 1 - Introduction to Biochemistry 9

Acid and Base Chemistry


+ Double-stranded DNA denatures at high pH values.

Chem 452, Lecture 1 - Introduction to Biochemistry 9

Acid and Base Chemistry

+ Double-stranded DNA denatures at high pH values.

Genomics ge•no•mics |jē'nōmiks; -'näm-|, plural noun [treated as sing.] the branch of molecular biology concerned with the structure, function, evolution, and mapping of genomes. ORIGIN 1980s: from genome [the complete set of genes present in an organism] + -ics. Chem 452, Lecture 1 - Introduction to Biochemistry 10 Genomics ge•no•mics |jē¹nōmiks; -¹näm-|, plural noun [treated as sing.] the branch of molecular biology concerned with the structure, function, evolution, and mapping of genomes. ORIGIN 1980s: from genome [the complete set of genes present in an organism] + -ics. Click here for timeline Chem 452, Lecture 1 - Introduction to Biochemistry 10 Genomics + The genetic code (1960's) DNA: AGTC transcription transcription UCAG mRNA: translation translation Protein: ACDEFGHIKLMNPQRSTVWY Chem 452, Lecture 1 - Introduction to Biochemistry 11 Genomics + The "Central Dogma" translation DNA → mRNA -→ Protein + Concept was initially proposed by Francis Crick. + What is shown above is not what Crick proposed. + Crick tried to clear this up in a 1970 letter in Nature

Genomics + The "Central Dogma" transcription translation DNA — → mRNA -→ Protein + Concept was initially proposed by Francis NATURE VOL. 227 AUGUST 8 1970 Central Dogma of Molecular Biology by FRANCIS CRICK MRC Laboratory of Mol Hills Road, Cambridge CB2 2QH The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred from protein to either protein or nucleic acid. Chem 452, Lecture 1 - Introduction to Biochemistry Genomics + The "Central Dogma" $\xrightarrow{\text{transcription}} \text{mRNA} \xrightarrow{\text{translation}}$ → Protein

+ Concept was initially proposed by Francis

- Crick.
- + What is shown above is not what Crick proposed.
- + Crick tried to clear this up in a 1970 letter in Nature

Chem 452, Lecture 1 - Introduction to Biochemistry 12

Genomics

+ The genetic code (1960's)

	U	С	Α	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

Chem 452, Lecture 1 - Introduction to Biochemistry 13

Genomics

- + Sickle cell anemia
- + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

	U	С	A	G	
_					-
U		Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Glv	G

Genomics

- + Sickle cell anemia
- + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb.A: ...ATG GTG CAC CTG ACT CCT \overline{GAG} GAG AAG TCT GCC GTT ACT... Hb.S: ...ATG GTG CAC CTG ACT CCT \overline{GTG} GAG AAG TCT GCC GTT ACT...

	U	С	Α	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	Α
\Box	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	C
	lle	Thr	Lys	Arg	Α
\Box	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	V/al	Δla	Glu	Gly	G

Chem 452, Lecture 1 - Introduction to Biochemistry 14

Genomics

- + Recombinant DNA technologies
- + Breakthroughs in the 1970's led to the ability to cut & paste and to sequence DNA.

Click here for timeline

Chem 452, Lecture 1 - Introduction to Biochemistry 15

Genomics

+ The 1990's saw the sequencing of complete genomes.

Chem 452, Lecture 1 - Introduction to Biochemistry 16

Genomics

+ The 1990's saw the sequencing of complete genomes.

Click here for timeline

Genomics

- + Human Genome Project completed in 2003
- + The Sequencing and mapping of the human genome
- + Human genome contains 3 billion base pairs(bp)
- + Codes for ≈25,000 proteins
- + Coding regions only account for 3% of the total DNA in the genome.

Chem 452, Lecture 1 - Introduction to Biochemistry 17

Genomics

- + Human Genome Project completed in 2003
- + The Sequencing and mapping of the human genome
- + Human genome contains 3 billion base pairs(bp)
- + Codes for ≈25,000 proteins
- + Coding regions only account for 3% of the total DNA in the genome.

Click here for timeline

Chem 452, Lecture 1 - Introduction to Biochemistry 17

Genomics

- + Identifying cause of genetic mutation, e.g. Sickle cell anemia
- + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT ${f GAG}$ GAG AAG TCT GCC GTT ACT.. Hb-S: ... ATG GTG CAC CTG ACT CCT ${f GTG}$ GAG AAG TCT GCC GTT ACT..

Chem 452, Lecture 1 - Introduction to Biochemistry 18

Genomics

- + Identifying cause of gentic mutation, e.g.Sickle cell anemia
 - + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT... Hb-S: ...ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT...

Chem 452,	Lecture	1 -	Introduction	to	Biochemistry

19

Genomics

- + Identifying cause of gentic mutation, e.g.Sickle cell anemia
 - + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT ${f GAG}$ GAG AAG TCT GCC GTT ACT... Hb-S: ... ATG GTG CAC CTG ACT CCT ${f GTG}$ GAG AAG TCT GCC GTT ACT...

Chem 452, Lecture 1 - Introduction to Biochemistry 19

Genomics

- + Identifying cause of gentic mutation, e.g. Sickle cell anemia
- + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT... Hb-S: ... ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT...

Chem 452 Lecture 1 - Introduction to Biochemistry

Genomics

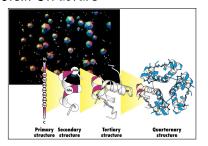
- + Pinpointing the locations of genetic lesions.
 - + e.g. Alzheimer's Disease

Human Genome Map http://www.ncbi.nlm.nih.gov/SCIENCE96/

Chem 452, Lecture 1 - Introduction to Biochemistry 20

Genomics

+ Tracking human migration



Genomics	
Comparative genomicsTracking evolution	
Tracking evolution	
Chem 452, Lecture 1 - Introduction to Biochemistry 22	
Genomics	
+ Comparative genomics	
Tracking evolution	
Click here for timeline	
Chem 452, Lecture 1 – Introduction to Biochemistry 22	-
Proteomics	
proteomics prōtē'amiks plural noun [treated as singular]	
the branch of molecular biology concerned with determining the proteome.	
DERIVATIVES proteomic adjective	
proteomic algebra	
Chem 452, Lecture 1 - Introduction to Biochemistry 23	
Proteomics	
proteome 'prōtē,ōm	
noun Genetics the entire complement of proteins that is or can be expressed by a cell,	
tissue, or organism: now that the human genome has been deciphered, much of the fanfare surrounding it has transferred to the proteome.	
ORIGIN 1990s: a blend of <i>protein</i> and <i>genome</i> .	
Chem 452, Lecture 1 - Introduction to Biochemistry 24	

Next up

+ Protein Structure

