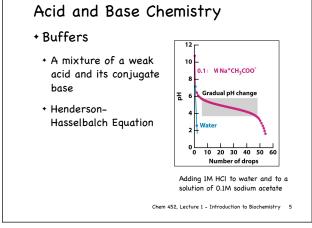
Chem 452 – Lecture 1 Introduction to Biochemistry Part 3

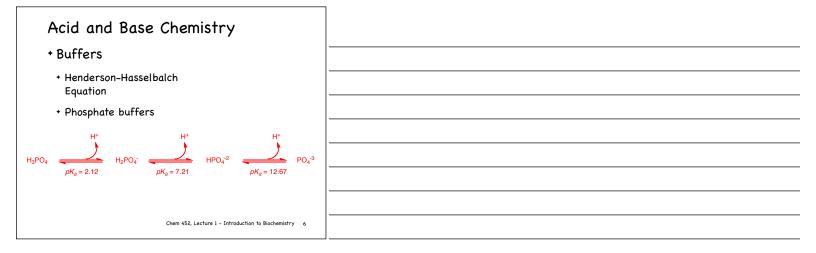
* Question of the Day: This (last) week, big news was made in the field of genomic. It was not only reported in the journals Nature and Science, but was also picked up by the New York Times and the Eau Claire Leader-Telegram. What was this news?

Acid and Base Chemistry	
 Biological systems are typically 70% water. 	
 Self ionization of water 	
 Addition of acids and bases to water 	
 Arrhenius acids and bases 	
 Brønsted-Lowry acids and bases 	
+ Buffers	
 Henderson-Hasselbalch Equation 	
Chem 452, Lecture 1 - Introduction to Biochemistry 2	

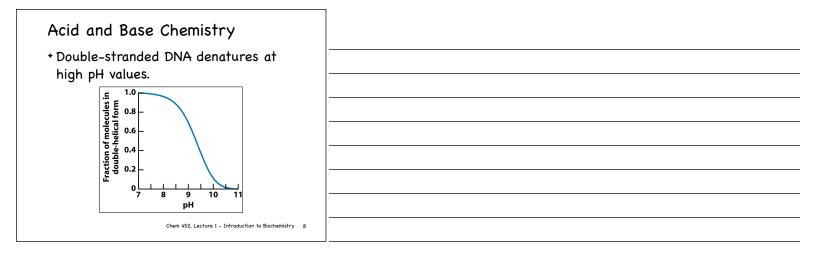
Acid	and	Base	Chemistry
------	-----	------	-----------

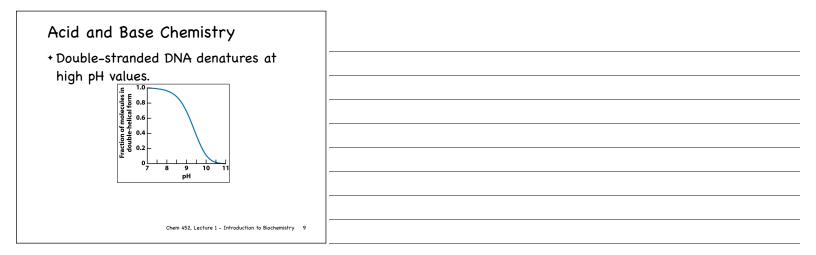

- Biological systems are typically 70% water.
- + Self ionization of water
- + Addition of acids and bases to water
 - + Arrhenius acids and bases Check out the
 - + Brønsted-Lowry acids and bases the class
- + Buffers
 - + Henderson-Hasselbalch Equation

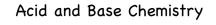
Chem 452, Lecture 1 - Introduction to Biochemistry 2

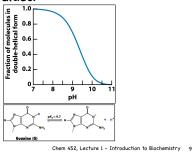

website.

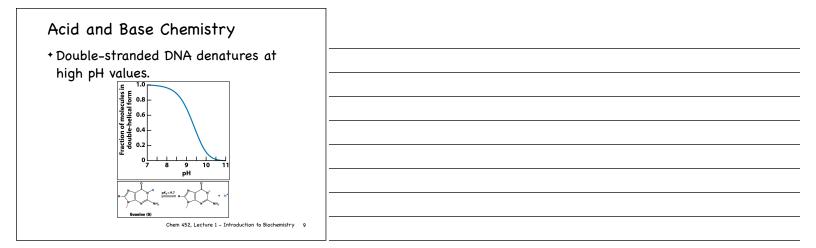
Problem	
What is the <i>pH</i> of a 0.1 M solution of HCl?	
3	


Problem 1.7	
What is the pH of a 0.1 M solution of acetic acid ($pK_a = 4.75$)?	
4	






Problem 1.14
For an acid, HA, the concentrations of HA and A ⁻ at pH 6.0 are 0.075 and 0.025, respectively. What is the pK_a value for the acid?



 Double-stranded DNA denatures at high pH values.

Acid and Base Chemistry • Double-stranded DNA denatures at high pH values. $y = \int_{c_{i}}^{10} \int_{c_{i}}^{0} \int$

Genomics	
ge•no•mics jē ⁱ nōmiks; -'näm- ,	
plural noun [treated as sing.] the branch of molecular biology concerned with the structure, function, evolution, and mapping of	
genomes. ORIGIN 1980s: from <i>genome</i> [the complete set of genes	
present in an organism] + - <i>ics</i> .	
Chem 452, Lecture 1 - Introduction to Biochemistry 10	

Genomics
ge•no•mics jēˈnōmiks; -'näm- ,
plural noun [treated as sing.] the branch of molecular biology concerned with the
structure, function, evolution, and mapping of genomes.
ORIGIN 1980s: from <i>genome</i> [the complete set of genes present in an organism] + -ics.
Click here for timeline
Chem 452, Lecture 1 - Introduction to Biochemistry 10

Genomics + The genetic code (1960's)	
DNA: AGTC transcription transcription mRNA: UCAG translation translation Protein: ACDEFGHIKLMNPQRSTVWY	
Chem 452, Lecture 1 - Introduction to Biochemistry 11	

Genomics → The "Central Dogma" DNA ^{transcription} mRNA ^{translation} Protein	
 Concept was initially proposed by Francis Crick. What is shown above is not what Crick proposed. Crick tried to clear this up in a 1970 letter in Nature 	
Chem 452, Lecture 1 - Introduction to Biochemistry 12	

Genomics	
+ The "Central Dogma"	
DNA $\xrightarrow{\text{transcription}}$ mRNA $\xrightarrow{\text{translation}}$ Protein	
 Concept was initially proposed by Francis 	
Crick.	
NATURE VOL 227 AUGUST B 1970 561	
Central Dogma of Molecular Biology	
by The central dogma of molecular biology deals with the detailed FRANCIS CRICK residue-by-residue transfer of sequential information. It states MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH protein or nucleic acid.	
Chem 452, Lecture 1 - Introduction to Biochemistry 12	

Genomics
+ The "Central Dogma"
DNA $\xrightarrow{\text{transcription}}$ mRNA $\xrightarrow{\text{translation}}$ Protein
 Concept was initially proposed by Francis Crick.
 What is shown above is not what Crick
proposed.
 Crick tried to clear this up in a 1970 letter in Nature
Chem 452, Lecture 1 - Introduction to Biochemistry 12

Genomics	
+ The genetic code (1960's)	
U C A G U Phe Ser Tyr Cys U Phe Ser Tyr Cys C Leu Ser STOP STOP A Leu Ser STOP Trp G C Leu Ser STOP Trp Leu Ser STOP Trp G C Leu Pro His Arg U Leu Pro Gin Arg G Leu Pro Gin Arg G Leu Pro Gin Arg G Ile Thr Asn Ser C Ile Thr Lys Arg G G Val Ala Asp Gly C Val Ala Glu Gly C Val Ala Glu Gly C	
Chem 452, Lecture 1 - Infroduction to Biochemistry 13	

Genomics	
+ Recombinant DNA technologies	
 Breakthroughs in the 1970's led to the ability to cut & paste and to sequence DNA. 	
<u>Click here for timeline</u>	
Chem 452, Lecture 1 - Introduction to Biochemistry 14	

Genomics	
 The 1990's saw the sequencing of complete genomes. 	
complete genomes.	
Chem 452, Lecture 1 - Introduction to Biochemistry 15	

Genomics
 The 1990's saw the sequencing of complete genomes.
<u>Click here for timeline</u>
Chem 452, Lecture 1 - Introduction to Biochemistry 15

Genomics	
 Human Genome Project completed in 2003 The Sequencing and mapping of the human genome Human genome contains 3 billion base pairs(bp) Codes for ≈20,000 proteins Coding regions only account for around 1% of the total DNA in the genome. 	
Chem 452, Lecture 1 - Introduction to Biochemistry 16	

Genomics	
 Human Genome Project completed in 2003 The Sequencing and mapping of the human genome Human genome contains 3 billion base pairs(bp) Codes for ≈20,000 proteins Coding regions only account for around 1% of the total DNA in the genome. 	
<u>Click here for timeline</u>	
Chem 452, Lecture 1 - Introduction to Biochemistry 16	

Genomics	
 Identifying cause of genetic mutation, a Sickle call anomia 	
e.g.Sickle cell anemia • Due to a 1 base pair change in the gene for the <i>C</i> submits of hemoslating	
the eta subunit of hemoglobin	
Hb-A:ATG GTG CAC CTG ACT CCT ${f GAG}$ gag aag tet gec gtt act Hb-S: Atg gtg cac etg act cet ${f GTG}$ gag aag tet gec gtt act	
Chem 452, Lecture 1 - Introduction to Biochemistry 17	

~		•
Ger	$\sim \infty$	100
		100

+ Identifying cause of gentic mutation, e.g.Sickle cell anemia

+ Due to a 1 base pair change in the gene for the β subunit of hemoglobin

HD-A:ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT... HD-S:ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT...

Chem 452, Lecture 1 - Introduction to Biochemistry 18

Identifying cause of gentic mutation, e.g.Sickle cell anemia	
+ Due to a 1 base pair change in the gene for the β subunit of hemoglobin	
Hb-A:ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT Hb-S:ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT	
$\label{eq:constraints} \begin{array}{ c c c c c } \hline U & C & A & G \\ \hline U & Phe & Ser & Tyr & Cye & U \\ Phe & Ser & Tyr & Cye & C \\ Leu & Ser & STOP & Tyr & G \\ Leu & Ser & STOP & Tyr & G \\ \hline G & I eur & Pyr & He & Ayr & U \\ \hline \end{array}$	
Leu Pro His Arg C Leu Pro Gin Arg G Historia Historia G A Historia Garage G Bistoria Historia Garage G Bistoria Historia G Bistoria Historia G Bistoria Historia G	
O I (M) Als Arg O I O V M Als Arg O I V M Als Arg O I V M Als Gru Gry A V M Als Gru Gry A V M Als Glu Gry A Chem 452, Lecture 1 - Introduction to Biochemistry 18	

Genomics	
 Identifying cause of gentic mutation, e.g.Sickle cell anemia Due to a 1 base pair change in the gene for the β subunit of hemoglobin 	
Hb-A:ATG GTG CAC CTG ACT CT GAG GAG AAG TCT GCC GTT ACT Hb-S:ATG GTG CAC CTG ACT CT GTG GAG AAG TCT GCC GTT ACT $\boxed{\underbrace{\begin{array}{c} \hline \hline$	

Genomics

- + Pinpointing the locations of genetic lesions.
 - + e.g. Alzheimer's Disease

Human Genome Map <u>http://www.ncbi.nlm.nih.gov/SCIENCE96/</u>

Chem 452, Lecture 1 - Introduction to Biochemistry 19

Genomics

+ Tracking human migration

Genomics

- + So what about the other 99% of the genome? Is it just junk?
 - The ENCODE Project was launched to describe the function of the human genome
 - + <u>Began in 2003</u>

Genomics	
 So what about the other 99% of the genome? Is it just junk? The ENCODE Project was launched to describe the function of the human genome <u>Began in 2003</u> September 5, 2012 	
Bethesda, Md., Wed., Sept. 5, 2012 — The Human Genome Project produced an almost complete order of the 3 billion pairs of chemical letters in the DNA that embodies the human genetic code — but little about the way this blueprint works. Now, after a multi-year concerted effort by more than 440 researchers in 32 labs around the world, a more dynamic picture gives the first holistic view of how the human genome actually does its job. (read more)	
Chem 452, Lecture 1 - Introduction to Biochemistry 21	

Genomics

- So what about the other 99% of the genome? Is it just junk?
 - + The ENCODE Project was launched to describe the function of the human genome
 - + <u>Began in 2003</u>
 - + September 5, 2012

During the new study, researchers linked more than 80 percent of the human genome sequence to a specific biological function and mapped more than 4 million regulatory regions where proteins specifically interact with the DNA. These findings represent a significant advance in understanding the precise and complex controls over the expression of genetic information within a cell. The findings bring into much sharper focus the continually active genome in which proteins routinely turn genes on and off using sites that are sometimes at great distances from the genes themsetives. They also identify where chemical modifications of DNA influence gene expression and where various functional forms of RNA, a form of nucleic acid related to DNA, help regulate the whole system

Genomics

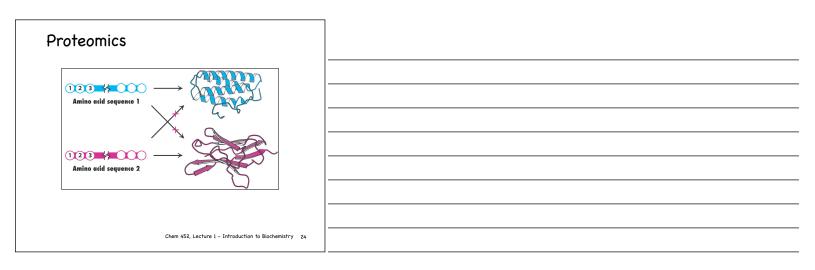
- So what about the other 99% of the genome? Is it just junk?
- The ENCODE Project was launched to describe the function of the human genome
 - + <u>Began in 2003</u>
 - September 5, 2012

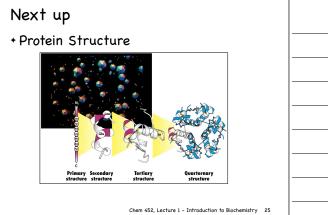
Bethesda, Md., Wed., Sept. 5, 2012 — The Human Genome Project produced an almost complete order of the 3 billion pairs of chemical letters in the DNA that embodies the human genetic code — but little about the way this blueprint works. Now, after a multi-year concerted effort by more than 440 researchers in 32 labs around the world, a more dynamic picture gives the first holistic view of how the human genome actually does its job. (<u>read more...</u>)

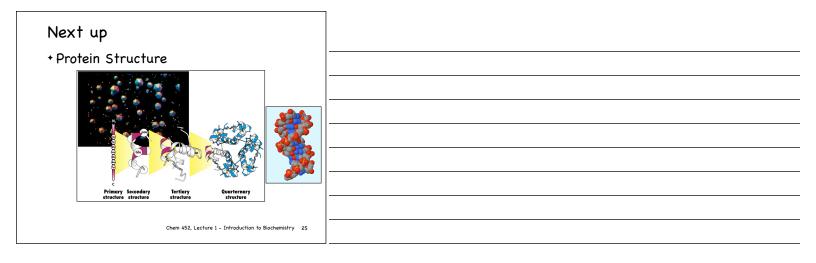
Chem 452, Lecture 1 - Introduction to Biochemistry 21

Genomics

- + So what about the other 99% of the genome? Is it just junk?
 - The ENCODE Project was launched to describe the function of the human genome
 - + <u>Began in 2003</u>
 - + September 5, 2012


Bethesda, Md., Wed., Sept. 5, 2012 — The Human Genome Project produced an almost complete order of the 3 billion pairs of chemical letters in the DNA that embodies the human genetic code — but little about the way this blueprint works. Now, after a multi-year concerted effort by more than 440 researchers in 32 labs around the world, a mor dynamic picture gives the first holistic view of how the human genome actually does its job. (read more...)


+ Natures ENCODE Explorer


Chem 452, Lecture 1 - Introduction to Biochemistry 21

Proteomics
proteomics ,prōtē'ämiks
plural noun [treated as singular] the branch of molecular biology concerned with determining the proteome.
DERIVATIVES
proteomic adjective
Chem 452, Lecture 1 - Introduction to Biochemistry 22

Proteomics	
proteome 'prōtē _i ōm	
noun Genetics	
the entire complement of proteins that is or can be expressed by a cell, tissue, or organism : now that the human genome has been deciphered, much	
of the fanfare surrounding it has transferred to the proteome.	
ORIGIN 1990s: a blend of protein and genome.	
Chem 452, Lecture 1 - Introduction to Biochemistry 23	

Next up		
+Protein Structure		
Question of the Day: Proteins are created in dimensional world but go on to function in the dimensional world. Explain how this works.	a 1- 1- 1- 12 3-	