Tay - Sachs Disease: Childhood Killer

By Alan Roloff
4/30/01
Introduction

- Discovered in 1881 by Warren Tay (1843 - 1927), a British ophthalmologist
- Named also for Bernard Sachs (1858 - 1944), New York neurologist
- described first cellular changes in Tay-Sachs
- familial nature of disease
- high propensity in East European Jews
Introduction

- Disease isolated to three ethnic groups
 - East European (Ashkenazi) Jews
 - Non-Jewish French Canadians living near the St. Lawrence River
 - Cajun population of Louisiana
- Other cases are isolated to specific families only
Classic TSD Symptoms

- Children are normal at birth
 - appear to develop normally
 - symptoms appear ~ 6 months old

- Initially
 - development slows
 - loss of peripheral vision
 - dramatic startle response
Symptoms (Cont’d)

• By 2 years
 - recurrent seizures
 - loss of mental functions
 - disappearance of acquired skills
 - restricted coordination and movement
Symptoms (Cont’d)

• Eventually
 - Blindness
 - Mental retardation
 - Paralysis
 - Nonresponsiveness to environment or other stimulation
 - Death at ~ 6 years old
Molecular Information

- TSD stems from mutation in β-hexosaminidase A enzyme
- β-hexosaminidase A comprised of α/β heterodimer
- Mutations in α (HEX A gene) cause TSD, mutant β causes Sandhoff Disease
- Autosomal recessive disease
- Gene frequency 1/27 for Jews, 1/300 for general population
Molecular Information

- HEX A is a 35 KB gene
- 14 exons
- Hex A mapped to 15q23-q24
- Mutations cause storage of GM2 Ganglioside in lysosomes of neurons
β-Hexosaminidase

GM2 Activator
Reduction of GM2 to GM3

GM2 Ganglioside

GM3 Ganglioside

N-Acetylgalactoseamine
TSD Mutations

- Many mutations that cause some form of TSD
 - caused by various mutations in α or β subunits
 - many not yet identified
Common Variations

1. Ashkenazi Jewish Population
 - 4 bp (TATC) at number 1277 in exon 11
 - 70% of Jewish TSD cases
 - Causes a 9 bp downstream stop signal and
 - mRNA is deficient

2. 69% of Cajun TSD patients have the same 4 bp insertion in exon 11
Common Variations

3. French Canadians
 - found in 82% of TSD cases
 - 7.6 KB deletion
 - loss of entire exon 1 and part of intron 1
 - extends 2000 bp into putative promoter
Diagnosis

- Two methods of diagnosis of TSD carriers
 1. Enzyme Assay
 - blood is drawn to determine β hexosaminidase A levels
 - Carriers have lower levels than normal individuals
 2. DNA Test
 - use known mutations as probes on cultured DNA extracts
Treatment

- No cure has been brought forth as of yet
- Animal model has been developed in mice
 - knocked out α subunit on chromosome 9
 - GM2 is stored, but no neurological abnormalities are apparent
 - mice have minor pathway to degrade GM2
- have created adenoviral vector which transforms in vivo liver cells
- full or partial restoration of enzyme
Prevention of TSD

• Accent on prevention because there is no cure
• Genetic counseling for high risk ethnic groups
 - easy prenatal diagnosis
 - possible therapeutic abortion

