The Molecular Basis of Phenylketonuria

Rebecca Siemer
2/26/01
Background

• What is it?
 – Phenylalanine
 – Untreated …
 – Restricted Diet

• Autosomal Recessive
 – Carriers: 1/50
 – Frequency: 1/10,000
 – Screening: 1960’s
Phenylalanine Hydroxylase Activity
Figure 8.29 Catabolic products of phenylalanine that accumulate in phenylketonuria.

- Phenylalanine
- Phenylpyruvate
- Phenylacetate
- Phenylacetyl glutamine

Reactions:
- Phenylalanine → Phenylpyruvate → Phenylacetate → Phenylacetyl glutamine
- Phenylalanine → Phenylpyruvate → Phenylacetate → Phenylacetyl glutamine
Phenylalanine Toxicity

- Unknown
- Serotonin and Catecholamines
 - Inhibits tyrosine and tryptophan transport into neurons
- Phenylpyruvic acid
 - Pyruvate decarboxylase inhibitor
- Myelin Synthesis
- Alterations in brain architecture
Phenylalanine hydroxylase

- 75% phenylalanine’s disposal
- Converts phe to tyr
- 12q24.1
- 1% map to genes for BH$_4$
Phenylalanine hydroxylase

- **Domains**
 - N-terminus (1-142)
 - Catalytic (143-410)
 - Tetramerization (411-452)

- **Active Site**
 - Non heme iron
 - Iron III resting state
Active site
Phenylalanine hydroxylase

- pH dependent equilibrium
 - Homodimers
 - Homotetramers
 - Antiparallel coiled-coil core
Mutations

- Catalytic
 - 209
- Regulatory
 - 49
- Tetramerization
 - 10
Active-site Mutations

- **T278I, T278A, and T278N**
 - Thr278 location
 - H-bond to Glu280
- **E280K**
 - Electrostatic potential altered
- **F254I**
 - pi-stacks with pterin ring
 - Interfere with pterin binding
Active-site Mutations (cont…)

- **P281L**
 - Defines shape near iron
- **F331C and F331L**
 - Abolish pi-stacking interactions that stabilize the active site wall
- **S349P**
 - Located near active site
 - Total alteration of active site shape
Normal PAH Mechanism

1. Fe$^{3+}$ + Sub. → BH$_4$
2. Fe$^{3+}$ + e$^{-}$ → Fe$^{2+}$
3. Fe$^{2+}$ + O$_2$ → Fe$^{3+}$
4. Fe$^{3+}$ + BH$_4$ → BH$_2$
5. BH$_2$ + Fe$^{3+}$ → Product
S349P Mutation Uncoupling
Regulatory Domain

- Regulation of PAH
- G46S Mutation
 - Distorts secondary structure
 - Inactive aggregates formed
Tetramerization Domain Mutations

- **IVS12 + 1g → a** in intron 12
 - Most prevalent mutation among Caucasians
 - Truncated form of PAH
 - Lacks last 52 amino acids
 - Unstable protein
- **pro407-arg408-pro409**
 - Hinge region
The Heterozygote Advantage

• **Ochratoxin A**
 – *Aspergillus* and *Penicillium*
 – N-acyl derivative of phenylalanine
 – Stops Protein Synthesis
 • Competes for phenylalanyl-tRNA synthetase

• **Celtic Origin**
 – Mild, wet climate
 – Famine, economic hardships
Treatment

• Diet
 – Non compliance
• Gene Therapy
 – Far Future
• Enzyme Replacement Therapy
 – PAL
 • Phenylalanine \rightarrow trans-cinnamic acid
 – Oral
An Interesting Tangent

- Phenylacetate
 - Damage to immature brain
 - Inhibits protein prenylation
 - Other mechanisms?
- Primary brain tumors are very similar to immature CNS
- Significant tumor suppression with no apparent toxicity to the host
Conclusions

• PAH deficiency
• Autosomal recessive
 – Heterozygote advantage
• Almost 400 known mutations
• Future
 – Most promising: Enzyme replacement therapy
References

References (cont…)

References (cont...)

