CHEM	304
SPRING	G 2008

HW & LEARNING GOALS #1: Physical and Chemical Structure of the Atmosphere

(ANSWERS BELOW + ON FOLLOWITH

	JAGES
1. Physical Structure of the Atmosphere: Identify and national boundaries between them, and answer the following quantum of the Atmosphere:	
a) What physical property distinguishes the	layers and/or defines the boundaries?
b) What physical/chemical processes dictat	e the "property" you identified in "a"?
c) What are the approximate altitudes of the	e boundaries between the various layers? SEE
d) Which layer contains most of the air (90	% by mass!)? Troposphere
e) Fill in the blanks: Vertical mixing occurs	s readily in the troposphere because the
LAPSE DATE is (+ or -	-). Vertical mixing is quite slow in the
SI stratosphere because the LAPSE PATE	is (+ or -).
3. Concentration Units: Water is a highly variable comp	comprise – to the nearest%? $N_2(784)$, $O_2(21)$, A_{20}
"full" of water vapor or "100% relative humidity"), to (That is, the partial pressure of water at room temper units of atm, bar, and mbar. ii) Also calculate the mix. 4. More on Concentration Units: The mixing ratio of or	rature is 20.0 Torr). i) Convert this pressure to cing ratio of water (at 0 km).
and in the mid-stratosphere $(X_{O_3}^{30km})$ is 8.3 ppm, when partial pressure of ozone, and ii) the <i>number density</i> (assume T = 0°C)	re the total pressure 11.5 mbar. Calculate i) the
C	
Si Free Radicals: Which of the following species are free	
2. CH ₃ Cl, Cl) CH ₃ ClO, QClO NO,	
$\frac{1}{bc}$ CH ₄ , CF ₃ Cl, CH ₃ O, OH, HO ₂ , CION	O_2 , N_2O , NO_2 SO_2
6. CHEM 104 review warning: Principles of Chemica	l Reactivity: Fill in the blanks.
a) A "product favored reaction" (i.e. one that "goes"	
a K_{eq} value that is $\rightarrow 1$ (>, <, or equal	l to) one.
b) A "reactant favored reaction" (i.e. one that does n	not "go") has a ΔG that is \bigcirc (+ or –), and
a K_{eq} value that is (>, <, or equal	l to) one.

7. Free Radical Reactions: Identify the free radicals in the reactions below and classify each reaction as "initiation", "propagation", or "termination". (Note that the •'s I <u>usually</u> place above free radicals have been omitted).

6.

4:

2. 1. 3.

6.

S.

1 b. 3.

6.

4

```
+ hv \rightarrow Cl + CH<sub>3</sub>
                                                          INITIATION
        a) CH<sub>3</sub>Cl
€.
                    + OH -> H<sub>2</sub>O + CH<sub>3</sub>
        b) CH<sub>3</sub>Cl
                                                             PROPOGATION
Si
                     + O_3 -> OClO^3 + O_2
        c) ClO<sup>•</sup>
2.
                    + OH -> HNO<sub>3</sub>
                                                             TERMINATION ZOPPOSING RXNS...
        d) NO<sub>2</sub>
į.
                         hν −>
                                     OH +
                                                NO_2
bc
        e) HNO<sub>3</sub>
3.
        f) OH
                          Cl ->
                                                            TERMINATION
                                     HOCI
6.
```

1. PERHAPS A SKETCH IS BEST?

1	
	THERMOSPHERE
ALT.	MESO SPHENE
•	STUTOSPHENE
	TROPOPAUSE (10-15 KM)
	TRO DOSPIFERE
	1 / / / / (o 4m)

THIS MAKES 120:

STATOSAGE IS MA HEATED FROM WITHIN (BI 03 PHOTO CHEMISTRY)

C) SEE THE SMETCH 1

d) MOST OF THE AIR (BY MASS) IS IN TROMSAUE.

Stratosphere LAPSE RATE IS (

N2-78%, O2-21%, Ar-190 (THESE AME QUITE STASSE)

3. PHIO = 20 Torr

4. Xos = 40.0 ppm = 4.0 x10-8 = Posen = 1.00tm = 4.0 x10-8 = 4.0x10-8 atm
(orban)

$$C_{03}^{eVin} = 4.0 \times 10^{-8} \text{ atm}_{x} \left(2.7 \times 10^{19} \text{ molec} \right) = 1.1 \times 10^{12} \frac{\text{molec}}{(\text{m}^{3})}$$

XOS = 8.3 ppm = 8.3x10-6 PO3 = 11,5x10-3 bark 8.3x10-6 = 9.5x10-6 bark

- 5. YES: (((7e-), CH3 (7e-), Cló (13e-), (202(19e-), NO2(17e-)) CH30 (13e-), Ho (7e-), Hóz (13e-), Nó (11e-). (THE 11." LIES ABOVE THE MOM WY UNPARABOE-)

PRODOGATION = 4, C

TERMINATION = 6, C